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Solving Quadratics

If we have a quadratic polynomial f = x2 + a1x+ a2, and we know that the complex roots of f are

r1 and r2, then we can write x2+a1x+a2 = (x− r1)(x− r2). When we expand the right hand side,

we get x2 − (r1 + r2)x+ r1r2. Since this must equal our original polynomial, we get the relations

−a1 = r1 + r2

a2 = r1r2.

Notice that the functions r1 + r2 and r1r2 are both symmetric in the roots. However, when we

solve the quadratic formula we need to be able to write the non-symmetric functions r1 and r2 in

terms of these symmetric functions. Let’s see how this happens:

r1, r2 =
−a1 ±

√
a21 − 4a2
2

=
r1 + r2 ±

√
(r1 + r2)2 − 4r1r2
2

=
r1 + r2 ±

√
r21 − 2r1r2 + r22
2

.

Notice that all the functions inside are still symmetric, but the asymmetry is introduced by the

square root. Notice that r21 − 2r1r2 + r22 = (r1 − r2)
2 = (−r1 + r2)

2. So, there are two functions,

r1 − r2 and −r1 + r2, that we could choose for
√

r21 − 2r1r2 + r22, but these two functions are no

longer symmetric, but instead when we switch r1 and r2, these two functions get multiplied by

−1.

Solving Cubics

Completing the Cube

Moving up a degree, let’s look at a cubic polynomial x3+a1x
2+a2x+a3. Similar to how when we

derive the quadratic formula, we use the technique of “completing the square”, there is a similar

technique called “completing the cube”.

For example, if we want to solve x3 − 6x2 + 5x− 4 = 0, we can subtract 5x− 4 from both sides

to get x3 − 6x2 = −5x + 4. Now, we can ask if there’s a cube polynomial (x + a)3 whose first two

terms are x3−6x2. Since (x+a)3 = x3+3ax2+3a2x+a3, if I want the first two terms to be x3−6x2,
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I should choose a = −2. Now, we can add 12x− 8 to both sides of x3 − 6x2 = −5x+ 4. When we

do, we get

x3 − 6x2 + 12x− 8︸ ︷︷ ︸
=(x−2)3

= 7x− 4.

Now, we can substitute in X = x − 2 (first rewriting 7x − 4 as 7(x − 2) + 10), and we find that

solving our original cubic is the same as solving X3−7X+10. But we have made progress, because

now we have no X2 term to worry about! A cubic polynomial with no quadratic term is called a

“depressed cubic”, and below we will only work with such cubics.

Onward to Galois Theory

So, if we have a depressed cubic x3 + a2x+ a3, and its roots are r1, r2, r3, then we get

0 = r1 + r2 + r3

a2 = r1r2 + r1r3 + r2r3

−a3 = r1r2r3.

In order to pick out r1, r2, r3, we again need to be able to solve for non-symmetric functions in

terms of symmetric functions. This will be quite complicated, so let’s start with an easier goal, let’s

consider this function:

∆(r1, r2, r3) = r21r2 + r22r3 + r23r1 − r22r1 − r23r2 − r21r3.

This function has the properties that ∆(r1, r2, r3) = −∆(r2, r1, r3) and ∆(r1, r2, r3) = ∆(r2, r3, r1).

That is to say, ∆ gets multiplied by −1 if two of the entries are swapped, but stays the same if

all three entries get cyclically rotated. Functions like ∆, or like r1 − r2 from before, that have the

property that swapping two roots multiplies them by −1 are called alternating functions.

One can check that ∆ and −∆ are the two functions we can choose for
√

−27a23 − 4a32 (and I do

so in the last section). So, again here we see that when we start with functions that are symmetric,

and we take a square root, we end up with functions that are “half as symmetric”, in the sense that

only half of the permutations of r1, r2, r3 preserve ∆, and the other half negate it.

We want to go further, though, and find the roots r1, r2, r3. In order to do this, we need to define

ω = −1+i
√
3

2 . This number has the properties that ω2 + ω + 1 = 0 and ω3 = 1. Let’s now look at the

function S1 = r1 + ωr2 + ω2r3. This function has the property that when you apply a permutation

of the roots fixing ∆ (that is, a cyclic permutation), S1 gets multiplied by ω or ω2, similarly to how

swapping two roots multiplied ∆ by −1. The function S1 has a “twin”, S2 = r1 + ω2r2 + ωr3,

2



which gets multiplied by ω when you cycle it the opposite direction. Swapping any pair of roots

swaps S1 with S2. Notice that if we knew S1 and S2, we could find r1, r2, r3 by r1 = 1
3(S1 + S2),

r2 =
1
3(ω

2S1 + ωS2), r3 = 1
3(ωS1 + ω2S2).

So, now we have S1 and S2, which both have the property that S3
i is invariant under cyclic

permutations, which means S3
1 + S3

2 is completely symmetric, and S3
1 − S3

2 is alternating. This

means we should be able to write S3
1 + S3

2 in terms of a1, a2, a3, and S3
1 − S3

2 in terms of a1, a2, a3,

and ∆. It turns out that S3
1 + S3

2 = −27a3 and S3
1 − S3

2 = 3
√
−3∆. So, we can write

S1 =
3

√
1

2
(−27a3 + 3

√
−3∆), S2 =

3

√
1

2
(−27a3 − 3

√
−3∆).

Once again, when we introduce the cube root, we break the remaining symmetries that ∆ had, so

that S1 and S2 are “1/3 as symmetric”, in the sense that only one of the three symmetries of ∆ is

also a symmetry of S1 and S2. (And it’s the “do nothing” symmetry!)

Galois’ observation seems to have been that for a general polynomial of degree n, solving that

polynomial using radicals depends on being able to carry out a strategy like this. First, you need

to find a function F1(r1, . . . , rn) so that some permutations of the roots fix F1, and some multiply

it by an kth root of unity, that is, by a number ζ ∈ C so that ζk = 1. Then F k will be symmetric in

the roots, and so can be expressed in terms of the coefficients of the polynomial. Then, you repeat,

you try to find a function F2(r1, . . . , rn) so that, of the permutations that fix F1, some fix F2, and

some multiply F2 by a ℓth root of unity, etc. If you are able to continue like this, eventually you

reach functions like our S1, S2 above, which have no symmetries, and you can use them to write

down the roots. However, you’re not guaranteed to be able to do this, but saying why precisely

would require more of a dive into group theory and field theory, so we’ll leave it for another time.

Writing ∆2 in terms of a2, a3

Because of the relations we had before, we can see that ∆2 is actually completely symmetric in

r1, r2, r3, and it is actually a fact that any symmetric function can be written in terms of the three

we already have. Writing out all of ∆2 in terms of r1, r2, r3 would take a while, and it would be

uninformative anyway. Instead, let’s just think about the kinds of terms that will show up in ∆2.

We can get:

• terms that look like r4i r
2
j ,

• terms that look like 2r3i r
2
j rk,

• terms that look like −2r3i r
3
j ,
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• terms that look like −2r4i rjrk, and

• one term that looks like −6r2i r
2
j r

2
k.

This is a lot to keep track of. To simplify our lives a bit, let’s introduce the notation

mn,m,o =
∑

i ̸=j ̸=k

rni r
m
j rok.

We will drop final 0s, so m1,1 means the same thing as m1,1,0. Then our accounting above tells

us ∆2 = m4,2 + 2m3,2,1 − 2m3,3 − 2m4,1,1 − 6m2,2,2. Moreover, we know m1 = 0, m1,1 = a2, and

m1,1,1 = −a3.

To write ∆2 in terms of a2 and a3, first notice that ∆ almost looks like m2,1, except that half the

coefficients are negative. In fact, we have that

∆2 = m2
2,1 − 4m3,3 − 4m4,1,1 − 12m2,2,2.

Let’s figure out these terms one at a time.

• To start off, it’s easy to see that m2,2,2 = m2
1,1,1 = a23.

• After a little thinking, we can also see that when we multiply out (r1 + r2 + r3)(r1r2 + r2r3 +

r1r3), we get a term r2i rj whenever the root from the left term is included in the product of

two roots from the right term. We also get a term r1r2r3, and we can get it in 3 different ways.

So, this means m1m1,1 = m2,1 + 3m1,1,1, which we can rewrite as m2,1 = m1m1,1 − 3m1,1,1 =

3a3.

• For m4,1,1, we have m4,1,1 = m1,1,1m3. Similar to the previous bullet point, we can think

about the terms we get when we multiply out (r1 + r2 + r3)
3. If you do, you will find that

m3
1 = m3 + 3m2,1 + 6m1,1,1. Rewriting, we get m3 = m3

1 − 3m2,1 − 6m1,1,1 = −3a3. Thus,

m4,1,1 = 3a23.

• Finally, similar thinking to the last bullet point will show that m3
1,1 = m3,3+3m3,2,1+6m2,2,2 =

m3,3 + 3m2,1m1,1,1 + 6m2,2,2. Rewriting that, we get

m3,3 = m3
1,1 − 3m2,1m1,1,1 − 6m2,2,2

= a32 + 9a23 − 6a23

= a32 + 3a23.
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Putting it all together, we have found that

∆2 = m2
2,1 − 4m3,3 − 4m4,1,1 − 12m2,2,2

= 9a23 − 4(a32 + 3a23)− 4(3a23)− 12a23

= −27a23 − 4a32.
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