
e is Transcendental, and mod-n-town
Ivan Aidun

This note was motivated by my attempt to understand this note by Robert Hines describing Her-

mite’s proof of the transcendence of e, and my understanding of the specifics of Hermite’s proof

come entirely from that note. My exposition about mod-n-town is my own, but I first learned about

the problem in a combinatorics class at Budapest Semesters in Mathematics taught by András

Gyárfás.

Hermite’s proof that e is transcendental

Following Liouville, the strategy to show that a number is irrational or transcendental is to show

that it is approximated “too well” by rational numbers. Liouville produced the example number

C =
∞∑
n=1

10−n!,

which is clearly very well-approximated by its partial sums. In fact, Liouville’s constant is in a sense

“maximally transcendental”, in the sense that it has irrationality measure ∞. (I’m not going to

define irrationality measure, but suffice it to say that rational numbers have irrationality measure

1, algebraic numbers have irrationality measure 2 by Roth’s theorem, and transcendental numbers

have irrationality measure ≥ 2.)

It is known that the irrationality measure of e is 2 (Borwein and Borwein 1987), so in a sense

e is no better approximated by rational numbers than an algebraic number would be. Altho Her-

mite did not know this, we can take this as evidence that we cannot prove e is transcendental as

straightforwardly as we could for Liouville’s constant. The idea instead will be to show that, for

any given n, we can uniformly approximate e, e2, . . . , en very well. (We will choose n to be the

degree of a putative polynomial having e as a root.) This, plus a little bit of trickery, will give us

our desired result.

We will begin by outlining the proof, and then we will go back and fill in the details of the

auxiliary constructions (as one must imagine Hermite would have done the first time around).

Outline of Proof

We must get good approximations for the powers of e from somewhere. The most natural place

to look would be to use the Taylor series expansion for ex, but we will actually turn elsewhere. As

we will see later, it will be somewhat important to our proof that we have good control over the
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prime factors appearing in our approximations, so the factorials appearing in the Taylor series are

not very good in this regard.

Instead, observe that for a polynomial f(x), by repeatedly integrating by parts we obtain the

identity ∫ x

0
f(t)e−t dt =

∞∑
N=0

(f (N)(0)− e−xf (N)(x)).

Inspired by this identity, we will define

f̃(x) =
∞∑

N=0

f (N)(x)

so that the above identity becomes (after multiplying through by ex)

ex
∫ x

0
f(t)e−t dt = exf̃(0)− f̃(x).

Thus, if we can cleverly choose a polynomial f(x) ∈ Q[x] so that the integral is close to 0, then we

will get that en ≈ f̃(n)

f̃(0)
. (Note: is there another, more enlightening way to view what information

f̃ captures about f? Can I view it as some kind of integral transform with certain nice properties?)

Once we choose a good enough polynomial f , the proof will go like this: suppose that e is the

root of a polynomial of degree n, g(x) =
∑n

k=0 ckx
k, where the ck ∈ Z. Then we will have∣∣∣∣∣

n∑
k=0

ckf̃(k)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=0

ckf̃(k)−

(
n∑

k=0

cke
k

)
f̃(0)

∣∣∣∣∣ (since e is a root of g)

=

∣∣∣∣∣
n∑

k=1

ck(f̃(k)− ekf̃(0))

∣∣∣∣∣
≤ C

n∑
k=1

∣∣∣(f̃(k)− ekf̃(0))
∣∣∣,

where C = max|ck|. If we are able to choose our f so that (1)
∣∣∣f̃(k)− ekf̃(0))

∣∣∣ is uniformly small

for all 1 ≤ k ≤ n, the right hand side can be made smaller than 1. If we can also make it so that

(2)
∑n

k=0 ckf̃(k) is a nonzero integer, we will arrive at a contradiction, and so conclude that e is

transcendental.
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Choosing a good polynomial

The more difficult part of the requirements we have placed on f is requirement (2), that
∑n

k=0 ckf̃(k)

is a nonzero integer. Making it an integer is not so hard, we can just make sure that f̃(k) is an inte-

ger, the difficult part is finding a way to guarantee that it is not 0. The method I would think of first

would be to show that
∣∣∣∑n

k=0 ckf̃(k)
∣∣∣ is bounded away from 0, but this is a non-starter because our

argument above crucially depends on this getting close to 0. The only other way I know to show

that an integer X is not 0 is to show that there exists a prime number p so that p ∤ X . (You can

interpret this as showing that the p-adic absolute value
∣∣∣∑n

k=0 ckf̃(k)
∣∣∣
p

is bounded away from 0.)

How exactly can we control f̃(k)? Well, whatever polynomial f(x) we choose will factor into

linear terms over C, so we should think about how a factored polynomial interacts with the twiddle

transform. If we set f(x) = c(x − k)mkh(x), where c is a constant and h(x) does not vanish at k,

then by the product rule

f (N)(x) =

N∑
i=0

(
N

i

)
c · (mk)

i (x− k)mk−i h(N−i)(x),

where ab = a(a− 1) . . . (a− b+ 1) is the “falling factorial” (or Pochhammer symbol). In particular,

the above expression shows that

f (N)(k) =

{
0 N < mk(
N
mk

)
c · (mk!)h

(N−mk)(k) N ≥ mk.

Controlling the prime factors of h(N−mk)(k) would be difficult, but we have lots of ability to control

the prime factors of
(
N
mk

)
and of mk! through judicious choice of mk and of c.

Not wanting to belabor the point overmuch, we will choose a large prime number p, and choose

the specific polynomial

f(x) =
xp−1(x− 1)p(x− 2)p . . . (x− n)p

(p− 1)!
.

Hopefully the above discussion has instilled enough intuition so that, after enough thought and

experimentation, you might have been able to arrive at a polynomial that looked something like

this. The crucial features of this polynomial are that the powers and the denominator have been

chosen so that f̃(0) is not divisible by p, but f̃(k) is divisible by p for 1 ≤ k ≤ n. Moreover, tho not

entirely obvious, when n is fixed and 0 ≤ x ≤ n, the denominator (p−1)! grows more quickly with

p than the numerator does, which makes this a suitable choice for getting good approximations

to ek. (And since we have infinitely many primes p to choose from, we can make a choice large
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enough to obtain whatever bounds we need to make our argument work.)

(Humorous aside: while reading Hines’ note, when he points out that the proof relies on the

existence of infinitely many primes, my very first thought was “ah yes, the weak form of Dirichlet’s

theorem”.)

Proposition. Let n be fixed. For the polynomial f above, f̃(x) has the following properties.

(i) For 0 ≤ x ≤ n, as p → ∞, exf̃(0)− f̃(x) → 0 uniformly in x.

(ii) The value f̃(0) is an integer, and if p > n it is not divisible by p.

(iii) The value f̃(k) is an integer divisible by p for 1 ≤ k ≤ n.

Proof. (i) For 0 ≤ x ≤ n, we have

∣∣∣exf̃(0)− f̃(x)
∣∣∣ = ex

∣∣∣∣∫ x

0
f(t)e−t dt

∣∣∣∣
≤ ex

(
x sup

[0,x]
{f(t)e−t}

)
≤ xex sup

[0,x]
{f(t)}

≤ nen sup
[0,n]

{f(t)}

≤ nen
np−1(np)n

(p− 1)!

= en
(nn+1)p

(p− 1)!
.

Taking logs, we have that the log of the numerator asymptotically grows like constant ·p, while

the log of the denominator asymptotically grows like p log p (which I will give a short proof of

in an appendix if I have time). Thus, the whole right hand side goes to 0 as p gets large, in a

manner independent of x. (Sidenote: we have pretty grotesquely overestimated this quantity,

probably by a factor of around en(n/(2e))pn. However, being more careful about the estimate

would only allows us to pick a slightly smaller p, it does not affect the asyptotic behavior of the

expression.)

(ii) Using our expression for f (N)(0) from above, with c = 1/(p− 1)! and h(x) being the factors
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in our chosen f(x) other than xp−1, we have that

f̃(0) =

∞∑
N=0

f (N)(0)

=
∞∑

N=p−1

(
N

p− 1

)
h(N−(p−1))(0)

=
∞∑
d=0

(
d+ p− 1

p− 1

)
h(d)(0) (setting d = N − (p− 1))

= (−1)np(n!)p︸ ︷︷ ︸
d=0 term

+ terms divisible by p.

This is clearly an integer, and if p > n it is not divisible by p. (If I have time, in an appendix I

will discuss divisibility properties of binomial coefficients.)

(iii) Using again our expression for f (N)(k), this time with h(x) being the terms other than

(x− k)p, we have that

f̃(k) =
∞∑

N=0

f (N)(k)

=

∞∑
N=p

(
N

p

)
p!

(p− 1)!
· h(N−(p−1))(0)

=

∞∑
N=p

(
N

p

)
p · h(N−(p−1))(0),

which is an integer divisible by p.

The only remaining detail to complete our proof that e is transcendental is to note that we can

assume c0 ̸= 0 (or else we could divide out extra factors of x from g), and that if we choose p > |c0|
then c0f̃(0) is not divisible by p, while ckf̃(k) is divisible by p for 1 ≤ k ≤ n, and thus

∑n
k=0 ckf̃(k)

is a nonzero integer.

Oddtown and its cousins

The crucial point above was that we could simultaneously approximate e very well, while main-

taining that
∑

ckf̃(k) ̸= 0. This reminds me of a family of combinatorial problems which I know

by the name of “the Oddtown problem” (or the generalization “the mod-n-town problem”).

The story goes like this: Oddtown is an odd little town, and its residents are enthusiastic about
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forming clubs. The clubs in Oddtown have the interesting properties that:

1. every club has an odd number of members, but

2. for every pair of clubs, the number of people who are members of both clubs is always even.

At most how many clubs can there be in Oddtown? (Perhaps you’d like to think about it for a

moment before you read on. This parenthetical block of text is unimportant to the exposition, it

is merely here to provide your eyes a convenient stopping point if you wish to think about the

answer yourself before you continue to read. Are you ready to read the answer? Really really?

Okay, in the next paragraph I’m going to reveal the answer.)

A bit of thought reveals that there is at least one configuration of clubs possible: every citizen of

Oddtown could be the sole member of their own private club. This way, there would be as many

clubs as denizens of Oddtown, each club would have 1 member (an odd number), and every pair

of clubs would have 0 members in common (an even number). Could we hope to do better by

cleverly assigning residents to clubs? No: there are at most as many clubs in Oddtown as there are

residents.

In the generalization, the residents of mod-n-town form clubs so that

1. the number of members of each club is not congruent to 0 mod n, but

2. for every pair of clubs, the number of people who are members of both clubs is congruent to 0

mod n.

The same example shows that mod-n-town could have at least as many clubs as residents, and the

question is could it possibly have more? The answer is known for n a prime power (I will give the

proof below), but unknown for any composite numbers other than prime powers. We do not even

know the answer for mod-6-town.

Proposition (mod-pk-town). In mod-pk-town, there are at most as many clubs as residents.

Proof. Let there be N residents in mod-pk-town. Form the matrix A, where Aij = 1 if person i is

in club j, and 0 otherwise. Then A has N rows, so rank(A) ≤ N . We will show that the columns

of A are linearly independent over Z, and so the number of columns is at most rank(A). Note that

the hypotheses on the sizes of the clubs translate to

ci · cj ≡

{
bi ̸= 0 if i = j

0 if i ̸= j
(mod pk),

Where ci denotes the ith column of A. Suppose we had a linear dependence
∑

j ajcj = 0 with

ai ∈ Z not all 0. Dividing out by common factors, we may assume the ai are setwise coprime, and

6



in particular, that there is some i so that p ∤ ai. For that i, we have

0 = ci · 0 = ci ·
∑
j

ajcj

=
∑
j

aj(ci · cj)

≡ aibi (mod pk).

However, bi ̸≡ 0 (mod pk), and ai is a unit mod pk, so aibi ̸≡ 0 (mod pk).

There are several interesting features of the proof. I find it interesting and surprising that this

combinatorics problem has such an elegant solution by linear algebra! But also, relating back to

the proof that e is transcendental, the contradiction reached in the proof is that the sum of pairwise

products of integers on the one hand is equal to 0, but on the other hand cannot be divisible by p

(must be p-adically far from 0). The issue with extending the proof to mod-6-town, or any other

mod-composite-town, is that we cannot reach the same kind of contradiction. Attempting the

same proof for mod-6-town, we would reach the conclusion that each ai is divisible by either 2 or

by 3. But there is no contradiction there: some of the aibi can be divisible by 2, others by 3, and

the whole sum could still be 0. A similar thing happens in Hermite’s proof if p is not chosen to be

prime, but is just replaced with some large integer.

This similarity makes me wonder whether a solution to the mod-6-town problem could poten-

tially provide a new tool for proving that numbers are irrational or transcendental. I don’t have

a specific target, nor a specific argument, in mind, but the idea would be that we might have a

constant where we can find “good” approximations, but those approximations leave us with little

control over the prime factors showing up.
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