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Abstract The sum of proper divisors function s(n) has been studied for more
than 2000 years. In this thesis we study statistical properties of the related function
Ss(n) :=

∑
d|n s(d). This function arises from a generalization of the practical numbers.

We prove that Ss(n)/n has an asymptotic distribution function, and that its values are
dense in the interval [0,∞). We also establish mean value computations for Ss(n)
and Ss(n)/n, and provide uniform bounds for the higher order moments of Ss(n)/n.
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1 Background: arithmetic functions

1.1 Arithmetic functions

We define an arithmetic function as a function f : N → C. Although this definition is
quite general, as Hardy and Wright [7, Chapter XVI, p. 302] note, in practice we want
arithmetic functions to meaningfully encode some arithmetic property of their input.
In this section we recall several natural examples of arithmetic functions, as well as
basic operations on them.

Definition 1.1. We define the function φ by setting φ(n) equal to the number of
integers k in the interval [1, n] such that gcd(k, n) = 1. This function is known as
Euler’s φ function.

Definition 1.2. We define the function τ by setting τ(n) equal to the number of
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positive divisors of n. This function is known as the number of divisors function.
(Sometimes also simply the divisor function, a name we avoid here to maintain clarity.)

Definition 1.3. We define the function σ by setting σ(n) equal to the sum of all the
positive divisors of n. This function is known as the sum of divisors function.

All three of these functions are multiplicative, i.e., they each satisfy f(ab) =
f(a)f(b) whenever gcd(a, b) = 1. The functions τ and σ both represent examples
of functions with representations as sums over the divisors of n. In those cases we can
write

τ(n) =
∑
d|n

1

and

σ(n) =
∑
d|n

d.

The subscripts on these sums should be read as “sum over all (positive) d which divide
n”.

Sums of this form play an important role in the study of multiplicative functions
for the following reason: whenever f and g are multiplicative, the function

h(n) :=
∑
d|n

f(d)g(n/d)

is also multiplicative. In this case, h is called the Dirichlet convolution of f and g,
expressed symbolically as h = f ∗ g. Using this notation we can rewrite τ = 1 ∗ 1 and
σ = id ∗1, where id(n) = n is the identity function and 1(n) = 1 is the function which
is identically one.

The operation ∗ is commutative and associative, and distributes over pointwise
addition. Moreover, the function

I(n) =

{
1 if n = 1
0 otherwise

satisfies I ∗ f = f ∗ I = f for all arithmetic functions f . Thus, the arithmetic functions
form a commutative ring under pointwise addition and ∗.

A function that is often discussed in the context of the ∗ operator is the Möbius µ
function, defined as

µ(n) =


1 for n squarefree with an even # of prime factors
−1 for n squarefree with an odd # of prime factors
0 if n has a square factor.

This function satisfies µ ∗ 1 = I. Thus, if the arithmetic functions f and g are related
by f = g ∗ 1 then g = f ∗ µ. This is known as the Möbius inversion formula.

1.2 The function s(n)

A very natural arithmetic function to consider is the sum of proper divisors function
s(n). That is, s(n) is the sum over all positive divisors of n which are strictly less than

3



n. Using the sum notation from the previous section, we can write

s(n) =
∑
d|n
d<n

d.

Notice that this is the same as the definition of σ(n), except that we do not add the
value n itself. Thus, we may write s(n) = σ(n)−n. Notice that s(n) is neither additive
nor multiplicative.

The function s(n) has an ancient history, having been considered by the Pythagore-
ans. Pomerance [15] goes so far as to call s(n) “the first function”. Some properties
considered by the Pythagoreans include classifying integers by whether they satisfy
s(n) < n, s(n) > n, or s(n) = n. Such integers are called deficient, abundant, or perfect
numbers, respectively. It is natural to wonder how many of each of these numbers there
are. There are known to be infinitely many abundant numbers; indeed, every multiple
of 6 greater than 6 itself is abundant. It is not currently known if there are infinitely
many perfect numbers. Euclid first showed that a number of the form 2p−1(2p − 1) is
perfect if 2p − 1 is prime, and Euler showed that all even perfect numbers must have
this form. No odd perfect numbers are known.

Because of the very restrictive form perfect numbers can take, it is not surprising
that they are rare: there are only 3 perfect numbers less than 1000, and only 4 less
than 100,000. A tool used to measure this disparity in how frequent these different
kinds of numbers appear in the sequence of integers is the asymptotic density, defined
in §2.1. Intuitively, if an integer n is chosen at random from a large interval [1, N ],
the asymptotic density of a set A ⊂ N measures how likely it is that n ∈ A. Since
every multiple of 6 is abundant, this chance is at least 1/6 for the abundant numbers.
However, for the perfect numbers it appears that this chance is next to zero. Indeed,
it was first shown by Davenport [13] that the deficient, abundant, and perfect numbers
all have asymptotic densities, and that the density of the perfect numbers is 0.

The Pythagoreans also considered when an integer n satisfies s(s(n)) = n. An
example of this behavior is the number 220, which satisfies s(s(220)) = s(284) = 220.
Notice that also s(s(284)) = s(220) = 284. In cases such as this, the pair (n, s(n)) is
known as an amicable pair. Again, it is not known if there are infinitely many amicable
pairs, but it is known that the amicable numbers have density 0. There are unresolved
questions about further iterates of s(n): the Catalan-Dickson conjecture asserts that the
orbit of every integer under s(n) remains bounded, while the competing Guy-Selfridge
conjecture asserts that for “most” even n, the s(n)-iterates of n are unbounded.

Another open question involving the function s(n) is a question of preimages: if A is
a set of integers, then how large can s−1(A) be? A conjecture due to Erdős, Granville,
Pomerance, and Spiro [6] asserts that if A has density 0 then s−1(A) also has density
zero. Though the theorem is not proven in general, it has been proven in special cases
(e.g., [12, 14, 29]).

1.3 The f-practical numbers

The function s(n) is closely related to other questions about sums of divisors. The
practical numbers, introduced by Srinivasan in [24], are positive integers n such that
every number between 1 and n can be represented as a sum of distinct divisors of n.
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For example, n = 12 is practical, since the divisors of 12 are 1, 2, 3, 4, and 6, and we
can write 5 = 1 + 4, 7 = 1 + 6, 8 = 2 + 6, 9 = 3 + 6, 10 = 4 + 6, and 11 = 1 + 4 + 6.

Erdős [5] claimed to have a proof that the practical numbers have density 0, but gave
no details. Complete criteria for a number to be practical were given by Stewart [25]
and Sierpiński [23]. However, specific information about the distribution of practical
numbers is more difficult to come by. Let P (x) denote the number of practical numbers
less than or equal to x. The first bound on P (x) was given by Hausman and Shapiro
[8] who asserted that P (x) ≤ x/(log x)β+o(1) (though their original proof was flawed).
Tenenbaum [26] established the sharper result P (x) ≤ x

log x(log log x)
O(1). Improving

on this, Saias [19] showed that there exist absolute constants c1, c2 such that

c1
x

log x
≤ P (x) ≤ c2

x

log x
.

The most recent progress in this direction was made by Weingartner [30], who showed
that there exists a positive constant c such that P (x) ∼ cx/ log(x).

An analog of the practical numbers arises in relation to divisors of polynomials of
the form xn−1. Recall that the cyclotomic polynomial Φk(x) is the monic degree φ(k)
polynomial with integer coefficients whose roots are exactly the primitive kth roots of
unity. Since the roots of xn − 1 are all the nth roots of unity, we have the factorization

xn − 1 =
∏
d|n

Φd(x).

Notice that the degree of the right side is
∑

d|n φ(d), which is equal to n. Thus, xn − 1
has a divisor of every degree less than or equal to n if and only if every number between
1 and n can be written as a sum of φ(d) for distinct divisors d of n. Such integers n
are now known as φ-practical.

Let Pφ(x) denote the number of φ-practical numbers less than or equal to x. There
are no Stewart-like criteria for determining whether a number n is φ-practical; however,
in [28], Thompson showed that there exist positive constants A,B such that

Ax

log x
≤ Pφ(x) ≤

Bx

log x
.

Later, Pomerance, Thompson, and Weingartner [16] showed that there exists a constant
C such that Pφ(x) ∼ Cx/ log x.

Following this, Schwab and Thompson [22] generalized this construction to f -
practical numbers for positive-integer-valued arithmetic functions f : a number n is
f practical if every integer between 1 and Sf (n) =

∑
d|n f(d) can be written as a sum

of f(d), for distinct divisors d of n. Notice that Sf (n) is the largest number that could
be written as a sum of f(d) where the d are distinct, so it is the natural upper bound for
the interval where we can expect this property to hold. The original practical numbers
and the φ-practical numbers correspond to the f -practical numbers for f = id and
f = φ, respectively.

1.4 Goals of this paper

In this paper we will prove several results about the function

Ss(n) :=
∑
d|n

s(n).
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In the spirit of the classical work of Davenport [3] on n/σ(n) and Schoenberg [20, 21] on
φ(n)/n, it is natural to consider whether the function Ss(n)/n possesses a distribution
function. We prove the following result in §3.2 and 3.3.

Theorem 3.2. The function Ss(n)/n has a continuous asymptotic distribution func-
tion.

Schoenberg also proved that the function φ(n)/n has image dense in the interval
[0, 1]. Analogous to this result, we prove the following.

Theorem 3.1. The values Ss(n)/n are dense in the interval [0,∞).

We also establish mean value computations for Ss(n) and Ss(n)/n, and provide
uniform bounds for the higher order moments of Ss(n)/n.

2 Background: probabilistic number theory

2.1 Asymptotic density

If we are given some natural number n, what are the chances that n is even? That n
is divisible by 3? Prime? Perfect? These are examples of “probabilistic” questions we
can ask about numbers, and some of them seem like they should have straightforward
answers. It seems, for instance, that an arbitrary natural number should have a 1/2
chance of being even. Indeed, if we know that n is chosen uniformly at random in the
interval 1 ≤ n ≤ N , then we know exactly that

P (n is even) =

{
1/2 if N is even
1/2− 1/(2N) if N is odd.

If N is quite large, then regardless of its parity, the chance of the chosen n being even
is quite close to 1/2. Similar reasoning should show that, as long as N is large, the
chance that n is divisible by k should be 1/k.

However, if we want to extrapolate from this a statement like “a natural number
chosen uniformly at random has a 1/k chance of being divisible by k”, we will encounter
a problem. Although a uniform distribution on a finite number of natural numbers is
well-defined, there does not seem to be such a notion for the entire set of natural
numbers. Intuitively, it would seem that any such probability distribution would have
to assign probability 0 to most if not all numbers. We can formalize this intuition, but
first we need the following result, known as Mertens’ Second Theorem [11, Theorem
3.15].

Theorem 2.1 (Mertens’ Second Theorem). There exists an absolute constant C > 0
for which ∏

p≤x

(1− 1/p) = e−C/ log x+O(1/(log x)2).

With this tool under our belt, we can prove that there is no “nice” probability
distribution on the natural numbers. Our proof here is modeled after [27, III.1 Theorem
1]. In what follows, let ξ be a random variable taking values in N. We abbreviate the
probability P (ξ = n) by P (n), and for a subset S ⊂ N we abbreviate P (ξ ∈ S) by
P (S). Let kN represent the set of positive integer multiples of k.
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Theorem 2.2. There does not exist a probability distribution on N satisfying P (kN) =
1/k for every k ∈ N.

Proof. We suppose such a distribution exists, seeking a contradiction. First, we note
that if p and q are distinct primes, then we know from elementary number theory that
pq | n if and only if p | n and q | n. That is, pN ∩ qN = pqN. Thus, the events ξ ∈ pN
and ξ ∈ qN are independent, since P (pN∩qN) = P (pqN) = 1/pq = P (pN)P (qN). From
this it follows that ξ ∈ (N \ pN) and ξ ∈ (N \ qN) are also independent events. For any
fixed n ∈ N, we know that n is certainly not in any set pN for prime p > n. So, for any
x > n, n is an element of the intersection Sx :=

⋂
n<p≤xN \ pN. Hence, P (n) ≤ P (Sx).

But, since each of the events ξ ∈ N\pN are independent, and since P (N\pN) = 1−1/p
by hypothesis, we have

P (Sx) =
∏

n<p≤x

P (N \ pN)

=
∏

n<p≤x

(1− 1/p).(1)

Since there are only finitely many primes less than n, the product (1) is a constant
multiple of the product appearing in Mertens’ Second Theorem, so (1) is O(1/ log x).
In particular, as x→ ∞, the product (1) goes to 0, so P (n) = 0. However, since n was
arbitrary, this shows that P (n) = 0 for all n ∈ N, which is impossible. Thus, no such
probability distribution exists.

This theorem says that any truly “probabilistic” study of the integers cannot have
this natural theorem that P (kN) = 1/k. However, if we circumvent some of the re-
quirements of a probability space, we can arrive at a notion which is similar enough
to be useful. We noted already that in any interval I = {n : 1 ≤ n ≤ N} we have a
well-defined uniform probability distribution. With this distribution, if A ⊂ N then
we can say precisely P (ξ ∈ A) = #(A ∩ I)/N . Instead of hoping for a probability
distribution on all of N, we can come close by instead taking the limit of these “partial
probabilities,” if it exists. This motivates the following definition.

Definition 2.3. We define the asymptotic density (also called the natural density or
simply density) of a subset A ⊂ N to be

dA = lim
N→∞

#{a ∈ A : a ≤ N}
N

,

when the limit exists.

We can verify quickly that under this definition, d kN = 1/k. We note that the
number of multiples of k less than N is ⌊N/k⌋, which satisfies N/k−1 ≤ ⌊N/k⌋ ≤ N/k.
Since

lim
N→∞

N/k − 1

N
= lim

N→∞

N/k

N
= 1/k,

we conclude that the density d kN = 1/k. In fact, it can be shown that an increasing
sequence a1 < a2 < a3 < . . . has density α if and only if limn→∞ n/an = α [27, p. 271].
Below we list some other nice properties of the asymptotic density.

• All finite sets have asymptotic density 0.
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• If A,B ⊂ N both have asymptotic densities, and A ∩ B = ∅, then d(A ∪ B) =
dA+ dB.

• Let A∆B = (A ∪B) \ (A ∩B) be the set symmetric difference of A and B. If A
and B have asymptotic densities, and dA∆B = 0, then dA = dB.

Not all sets have asymptotic densities. For example, let S be the set of all integers
with an odd number of digits (when written base 10). Letting SN = {s ∈ S : s ≤ N}, if
N = 102m − 1 we have #SN/N = 1/11+O(1/100m), while if N = 102m+1 − 1 we have
#SN/N = 10/11 + O(1/100m). Since these subsequences converge to different values,
the density dS cannot exist. We can define the upper density of a set A as

dA = lim sup
N→∞

#{a ∈ A : a ≤ N}
N

and the lower density dA similarly with the lim sup replaced by lim inf. Then for the
set S above we have dS = 10/11 and dS = 1/11.

2.2 Mean values

Figure 2.2 shows a table of values of some arithmetic functions encountered in a first
course in number theory, in the interval 2510 ≤ n ≤ 2530. The values have been
computed with Mathematica, and the interval has been somewhat arbitrarily chosen to
be the ten numbers on either side of 2520—the least common multiple of the numbers
1 through 10.

We can see from this table that values of these arithmetic functions are quite spo-
radic. For example, τ takes on its largest value at 2520, and φ takes on its smallest
value there—but at the prime 2521 τ is at a local minimum and φ a local maximum.
It seems the values of τ(n) are perhaps hovering around 6, and the values of φ(n)
around 1500 (with considerable variation). Meanwhile, the values of µ seem to follow
no discernible pattern.

Each of these functions is multiplicative, so we know about their values at particular
integers n only insofar as we know about the prime factorization of n, which can vary
wildly. It would be nice to be able to make some predictions knowing only the size of
n, and not having to do the extra work of factoring it.

Here again, we are aided by treating our inputs as uniformly distributed random
variables in some interval. If we do, then these arithmetic functions, in addition to
looking like they take “random” values, now will take on values that are truly random.
With this view, we can begin to ask certain statistical questions about our functions,
and get to know them the way a statistician gets to know a data set. Perhaps the most
natural first statistic to examine is the mean value, or average.

Definition 2.4. For an arithmetic function f , we define the mean value of f over
n ≤ x, for x some positive real number, to be

Mx(f) =
1

x

∑
n≤x

f(n).

Furthermore, we define the mean value of f to be M(f) = limx→∞Mx(f) when the
limit exists.
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n µ(n) τ(n) φ(n)
2510 -1 8 1000
2511 0 10 1620
2512 0 10 1248
2513 1 4 2148
2514 -1 8 836
2515 1 4 2008
2516 0 12 1152
2517 1 4 1676
2518 1 4 1258
2519 1 4 2280
2520 0 48 576
2521 -1 2 2520
2522 -1 8 1152
2523 0 6 1624
2524 0 6 1260
2525 0 6 2000
2526 -1 8 840
2527 0 6 2052
2528 0 12 1248
2529 0 6 1680
2530 1 16 880

Figure 1: Table of values for common arithmetic functions

We can apply this definition to compute the mean value of some of the arithmetic
functions we have discussed. We present only the computation of Mx(σ), as the com-
putations for τ , φ, and Sσ are very similar. To perform this computation, we will need
the following estimates [1, Theorem 3.2].

Lemma 2.5. For x ≥ 1 we have:

1.
∑
n≤x

1

n
= log x+ C +O(1/x).

2.
∑
n≤x

1

ns
= ζ(s) +

x1−s

1− s
+O(x−s) for s > 0, s ̸= 1.

Theorem 2.6. For x ≥ 1 we have∑
n≤x

σ(n) =
ζ(2)

2
x2 +O(x log x).

It follows that Mx(σ) = ζ(2)x/2 +O(log x).

Proof. We write ∑
n≤x

σ(n) =
∑
n≤x

∑
d|n

d.

9



If we have d | n, then by definition there is some q such that n = dq. Thus, we can
rewrite the above sum as a sum over all pairs (d, q) satisfying dq ≤ x:∑

n≤x

∑
d|n

d =
∑
n≤x

∑
d : ∃q,
dq=n

d

=
∑
d,q

dq≤x

d.

We now interpret this sum by first choosing q ≤ x, then summing over all the d
satisfying dq ≤ x. The d satisfying this are exactly the d ≤ x/q. Thus, we write∑

d,q
dq≤x

d =
∑
q≤x

∑
d≤x/q

d.

Notice now that
∑

d≤x/q d = ⌊x/q⌋(⌊x/q⌋+1)/2 = x2/2q2 +O(x/q). Therefore, we
write ∑

q≤x

∑
d≤x/q

d =
∑
q≤x

(
1

2

(
x

q

)2

+O(x/q)

)

=
x2

2

∑
q≤x

1

q2
+O

x∑
q≤x

1

q


=
x2

2

(
ζ(2)− 1

x
+O(1/x2)

)
+O(x log x),

where the last equality follows from the estimates in Lemma 2.5. From here the result
follows from a brief calculation.

We can interpret Theorem 2.6 as saying if ξ is chosen randomly from {1, 2, . . . , N},
then σ(ξ) is on average ζ(2)N/2.

Methods similar to those used in Theorem 2.6 can show that Mx(τ) = log x+O(1)
and Mx(φ) = x/(2ζ(2)) + O(log x). The methods used above, coupled with the above
result, can show that Mx(Sσ) = ζ(2)2x/2 +O((log x)2).

Mean values of functions are not merely tools to fuel intuition—the computation
of mean values can imply deep facts about the arithmetic behavior of integers. For
example, the prime number theorem is equivalent to the assertion that M(µ) = 0 [1,
Theorems 4.14, 4.15].

2.3 Distribution functions

In the previous two sections we have seen that we can recover definitions similar to
those of probability theory by considering the interval [1, n]∩Z equipped with a uniform
probability distribution. We replace our notion of probability with the notion of density,
and we replace our notion of expected value with the mean value introduced in the
previous section. Now, we introduce an analogue to the distribution function.

In probability, given a real random variable X following some distribution, the
distribution function F associated to the distribution is F (x) = P (X ≤ x). Any func-
tion arising this way will be non-decreasing and right-continuous (i.e., limx→x+

0
F (x) =
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F (x0)). Moreover, such a function will satisfy limx→−∞ F (x) = 0 and limx→∞ F (x) =
1. We take these properties to define a general distribution function.

Definition 2.7. A non-decreasing function F is a distribution function (d.f.) if F is
right-continuous and satisfies limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

For our purposes, our “random variable” will be an arithmetic function f , and we
will replace the probability P (X ≤ x) with the density d{f(n) ≤ x}. If the function
f is well-behaved, then the function which appears will be a true distribution function
according to the above definition.

Definition 2.8. Given an arithmetic function f , we define the sequence of functions

FN (x) =
#{n ≤ N : f(n) ≤ x}

N
.

We say f has asymptotic distribution function (a.d.f.) F if the functions FN converge
pointwise to a function F , and if F is a distribution function.

Example 2.9. Let A be a set of natural numbers with dA = α. Recall that the
characteristic function χA is defined as

χA(n) =

{
1 if n ∈ A
0 otherwise.

Let us examine the “partial” distribution functions FN associated with χA. The func-
tions FN (x) will all equal 0 for x < 0, since χA(n) ≥ 0. For 0 ≤ x < 1, FN (x) is equal
to the number of n ≤ N for which χA(n) = 0, i.e., the number of n ≤ N satisfying
n /∈ A. This value converges to 1− α by the assumption that A has density α. Then,
for x ≥ 1, FN (x) = 1 since χA(n) ≤ 1. Thus, χA has an a.d.f. F given by

F (x) =


0 if x < 0
1− α if 0 ≤ x < 1
1 if x ≥ 1.

The preceding example shows a simple case in which a question of interest (the
asymptotic density of A) is translated into a question about the limiting distribution
of an arithmetic function (in this case, χA). If an arithmetic function f has an a.d.f. F ,
then F contains much of the information about f . Thus, sufficiently precise knowledge
of F can be used to answer questions about f . We give one more example of a way
this translation can occur, again involving asymptotic density.

Example 2.10. Suppose an arithmetic function f has a continuous a.d.f. F . Then for
any x ∈ R, d{n : f(n) = x} = 0. To see this, note that for any ε > 0 we have

d{n : f(n) = x} ≤ d{n : x− ε < f(n) ≤ x+ ε} = F (x+ ε)− F (x− ε).

Since F is continuous, as ε→ 0 the right-hand side goes to 0. Thus, d{n : f(n) = x} =
0.
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It will become important to us in Section 3 to know something of the kinds of
analytic behavior a d.f. can display. First of all, because of the assumption of right-
continuity, if a d.f. is discontinuous at a point x, then it must increase by a jump at x.
A simple example of such a jumping function is the distribution

H(x) =

{
0 if x < 0
1 if x ≥ 0.

If a d.f. only increases at its discontinuities—i.e., it is constant in any interval not
containing a discontinuity—then it is said to be a discrete d.f.

For any d.f. F , since F is monotone, a theorem of real analysis says that F is
differentiable except perhaps on a set of measure 0. Suppose F is continuous, with
derivative h almost-everywhere. If h is Lebesgue-integrable and F satisfies

F (x) =

∫ x

−∞
h(t) dt,

then F is said to be absolutely continuous. On the other hand, if h(x) = 0 almost-
everywhere then F is said to be purely singular. The usefulness of these three classifi-
cations comes in the following theorem [27, III.2 Theorem 1].

Theorem 2.11 (Lebesgue decomposition theorem). Any d.f. F may be written as
F = a1F1 + a2F2 + a3F3, where a1 + a2 + a3 = 1, and F1, F2, F3 are d.f.s such that F1

is absolutely continuous, F2 is purely singular, and F3 is discrete.

This theorem says that we can break every d.f. up into a sum of three distribution
functions, each of whose behavior is more easily understandable.

2.4 Theorems of Erdős-Wintner and Schoenberg

Because of the utility of a.d.f.s, a rich theory has been established on the subject of
when certain arithmetic functions have an a.d.f. A powerful theorem in this vein is the
Erdős-Wintner Theorem, which completely answers the question of the existence of an
a.d.f. in the case of additive arithmetic functions.

Theorem 2.12 (Erdős-Wintner, 1939). Fix any real number R > 0. A real additive
function f(n) has a limiting distribution if and only if the following three series converge
simultaneously:

(i)
∑

|f(p)|>R

1

p
; (ii)

∑
|f(p)|≤R

f(p)2

p
; (iii)

∑
|f(p)|≤R

f(p)

p
.

In this case, all three sums converge for all R > 0. The limiting d.f. is either
absolutely continuous, purely singular, or discrete. It is continuous if and only if∑

f(p)̸=0

1

p
= ∞.

12



The Erdős-Wintner theorem gives insight not only into additive functions, but also
multiplicative functions. If g is a strictly positive multiplicative function satisfying
certain reasonable conditions 1, then g possesses an a.d.f. ψ if and only if the additive
function log g possesses an a.d.f. ω. In this case, ω(x) = ψ(ex).

Perhaps most surprising is that the Erdős-Wintner Theorem does not require con-
sidering f(pα) for any α > 1. In some sense this tells us that if an additive function f
has an a.d.f., then for almost all n, the value of f(n) is almost determined by its value
on the squarefree part of n.

As an application of the Erdős-Wintner theorem, we show how it can be used to
prove the classic theorem of Davenport [3] that n/σ(n) has a continuous distribution
function. The same kind of argument can be applied to the functions φ(n)/n and
n/Sσ(n) to show that they, too, have a.d.f.s.

Corollary 2.13. The function f(n) = n/σ(n) has a continuous asymptotic distribution
function.

Proof. We will show that the additive function log f has a continuous a.d.f. by consid-
ering the sums of the Erdő-Wintner Theorem at R = 1. This will immediately show
the existence of a continuous a.d.f. for f . From the Taylor expansion of log(1 + x)
and of (1 + x) log(1 + x), we have x/(1 + x) ≤ log(1 + x) ≤ x for x > −1. Notice
first that log f(p) = log(1 − 1/(p + 1)), and so −1/p ≤ log f(p) ≤ −1/(p + 1). Thus,
|log f(p)| ≤ 1/p < 1. Therefore, the sum (i) is empty, while the sums (ii) and (iii) are
over all positive primes. For these sums we have∣∣∣∣(log f(p))2p

∣∣∣∣ ≤ ∣∣∣∣ log f(p)p

∣∣∣∣ ≤ 1

p2
.

Hence, both of the sums (ii) and (iii) converge absolutely, and so by the first part of
the Erdős-Wintner Theorem, log f has an a.d.f. F .

Notice also that ∑
f(p)̸=0

1

p
=
∑
p

1

p
,

which diverges. Therefore, by the second part of the Erdős-Wintner Theorem, F is
continuous.

This theorem has implications for the study of deficient, abundant, and practical
numbers. In light of Example 2.10, the continuity of the distribution function F implies
that d{n : n/σ(n) = 1/2} = 0. The numbers for which n/σ(n) = 1/2 are exactly the
numbers for which n = s(n), i.e., the practical numbers. Similarly, the value of F (1/2)
is the density of the abundant numbers, and 1− F (1/2) is the density of the deficient
numbers.

Another, earlier, theorem guaranteeing the existence of a distribution function is
the following, due to Schoenberg [21, Theorem 1].

1g cannot be almost everywhere almost zero, i.e., it cannot be the case that for all ε > 0, d{n : g(n) >
ε} = 0. An example of a function failing this condition is f(n) = 1/n. See [2, Theorem 4].
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Theorem 2.14 (Schoenberg, 1928). Let f(n) be a multiplicative arithmetic function
satisfying

i. f(pα) > 0

ii. the series

(1)
∑
p

1

p
∥log f(p)∥

converges, where ∥x∥ := min(1, |x|).

Then f(n) has an asymptotic distribution function, F (x). The function F is increasing
on the closure of im f(n). Moreover, if there exists an increasing sequence of primes
q1, q2, . . . such that f(qi) ̸= f(qj) whenever i ̸= j and such that

∞∑
i=1

1

qi

diverges then F (x) is everywhere continuous.

This theorem can also be applied to φ(n)/n, n/σ(n), and n/Sσ(n). However, in
this paper we will be most concerned with the result about the points on which the
d.f. F is increasing. Schoenberg showed that the values of φ(n)/n are dense in [0, 1]
[20], and the same argument extends to n/σ(n) and n/Sσ(n). The arguments are very
similar, so we will present only the one for n/σ(n). We rely on the following lemma.

Lemma 2.15. Let (ai)i be a decreasing sequence of positive real numbers satisfying
limi→∞ ai = 0 and

∑∞
i=1 ai = ∞. Then for any L > 0, there is a subsequence (ai(k))k

satisfying
∑∞

k=1 ai(k) = L.

Proof. Let i(1) be the smallest index i such that ai(1) ≤ L; such an index exists since
ai → 0. If we have equality, we are done. Recursively define

sn =
n∑

k=1

ai(k)

and let i(k+1) be the smallest index i > i(k) such that ai(k+1) ≤ L−sk. If at any point
we achieve equality, we are done. Now, the sequence of partial sums sn is increasing
and bounded above by L, and so approaches some limit. Moreover, since the sum of the
ai diverges, for every N > 0, we cannot have i(k + 1) = i(k) + 1 for all k ≥ N , or else
sn =

∑n
k=1 ai(k) would also diverge. Thus, infinitely often we have i(k + 1) > i(k) + 1,

which by the way we chose i(k+1) means that L− sk < ai(k)+1. Since i(k) + 1 goes to
∞ with k, ai(k)+1 goes to 0 with k, and so sn converges to L.

Theorem 2.16 (Schoenberg). The values n/σ(n) are dense in [0, 1].

Proof. It suffices to show that the values σ(n)/n for n squarefree are dense in [1,∞).
Note that if n is squarefree, then we can write

σ(n)/n =

r∏
i=1

pi + 1

pi
,
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where p1, . . . , pr are the distinct prime factors of n. Taking logarithms we find

log σ(n)/n =

r∑
i=1

log
pi + 1

pi
.

Thus, it suffices to show that sums of this form are dense in [0,∞). Now, by the same
logarithm inequality as before we have log((pi + 1)/pi) = log(1 + 1/pi) ≥ 1/(pi + 1) >
1/2pi. Thus, the series ∑

p

log
p+ 1

p

diverges. Note that as p grows, log((p + 1)/p) goes to 0, so this sequence satisfies the
conditions of the preceding lemma. Thus, for every L > 0 there is a sequence of sums∑r

i=1 log(pi + 1)/p converging to L, i.e., such sums are dense in [0,∞), which is what
we had to show.

Since s(n)/n = σ(n)/n− 1, it follows from the above that the values of s(n)/n are
dense in [0,∞). The above result also provides us with the following corollary.

Corollary 2.17. Let F be the a.d.f. associated with n/σ(n). Then F is increasing on
exactly the set [0, 1].

Proof. By Theorem 2.14, F is increasing on all the points {n/σ(n)}, as well as on all
limit points of this set. Note that for all n, n/σ(n) ∈ [0, 1]. By Theorem 2.16, every
point of [0, 1] is a limit point of {n/σ(n)}, and so F is increasing on [0, 1].

Since Ss(n)/n is not multiplicative, we cannot apply either the Erdős-Wintner The-
orem nor Theorem 2.14 to yield an a.d.f. the way we can for the related functions
σ(n)/n and Sσ(n)/n. Moreover, for the function f(n) = log(Ss(n)/n), f(p) is negative
and unbounded, so there exists a prime p0 so that |f(p)| > R for all p ≥ p0. Thus,
the sum (i) in the Erdős-Wintner theorem will diverge for this function. Similarly,
for g(n) = Ss(n)/n, the sum (1) of Theorem 2.14 diverges. However, we will use the
continuous distribution functions for σ(n)/n and Sσ(n)/n furnished by these theorems
in the next section to show Ss(n)/n has a continuous distribution function.

3 Results

3.1 Ss(n)/n is dense in R+

In this section we will show that the values Ss(n)/n are dense in [0,∞). Since the
function Ss(n)/n is not multiplicative, the same sort of argument as in Theorem 2.16
will not work. We are able to extract the fact that s(n)/n is dense in [0,∞) by writing it
in terms of the function σ(n)/n, so we might hope that there is a similar representation
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for Ss(n)/n. For example, we can write

Ss(n) =
∑
d|n

s(d)

=
∑
d|n

(σ(d)− d)

=
∑
d|n

σ(d)−
∑
d|n

d

= Sσ(n)− σ(n).

Then Ss(n)/n = Sσ(n)/n − σ(n)/n. However, determining whether the values of
Ss(n)/n are dense in [0,∞) from this seems to require we are able to simultaneously
control the growth of Sσ(n)/n and σ(n)/n, which seems difficult.

To circumvent these problems, we introduce another relationship involving Ss: if a
and b are relatively prime integers, then Ss(ab) = Ss(a)Ss(b) + σ(a)Ss(b) + σ(b)Ss(a).
To see this, we write

Ss(ab) = Sσ(ab)− σ(ab)

= Sσ(a)Sσ(b)− σ(a)σ(b)

= (Ss(a) + σ(a))(Ss(b) + σ(b))− σ(a)σ(b)

= Ss(a)Ss(b) + σ(a)Ss(b) + σ(b)Ss(a).

We will also make use of the following result, known as Bertrand’s Postulate.

Theorem 3.1 (Bertrand’s Postulate). If x > 1 then there is a prime p in the interval
[x, 2x].

We now proceed with the result.

Theorem 3.2. The values Ss(n)/n are dense in [0,∞).

Proof. Let x ∈ [0,∞), and index the primes in order p1, p2, . . . . If x = 0, then the
sequence Ss(pi)/pi = 1/pi converges to x. Otherwise, x > 0, and let pk be the least
prime so that Ss(pk)/pk < x. Notice that if q is a prime not dividing n, then

Ss(nq)

nq
=
Ss(n)Ss(q)

nq
+
σ(n)Ss(q)

nq
+
σ(q)Ss(n)

nq

=
1

q

(
Ss(n)

n
+
σ(n)

n

)
+
q + 1

q

Ss(n)

n

=
1

q

Sσ(n)

n
+
q + 1

q

Ss(n)

n

≥ q + 1

q

Ss(n)

n
.

For n ≥ k let Pm =
∏m

i=k pi. Since the product
∏

i
pi+1
pi

diverges, there exists an m ≥ k
so that Ss(Pm)/Pm < x ≤ Ss(Pm+1)/Pm+1.
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Let n1 = Pm. Beginning with the value Ss(n1)/n1 as an approximation for x, we
will recursively construct better approximations for x. Let q1 be any prime which does
not divide n1 and which satisfies

q1 >
Sσ(n1)/n1 + Ss(n1)/n1

x− Ss(n1)/n1
≥ pm+1.

Then we have

Ss(n1q1)

n1q1
=

1

q1

Sσ(n1)

n1
+
q1 + 1

q1

Ss(n1)

n1

=
Ss(n1)

n1
+

1

q1

(
Sσ(n1)

n1
+
Ss(n1)

n1

)
<
Ss(n1)

n1
+

(
x− Ss(n1)

n1

)
= x.

On the other hand, since pm+1 > 1, by Bertrand’s Postulate we can choose q1 so that

q1 ≤ 2
Sσ(n1)/n1 + Ss(n1)/n1

x− Ss(n1)/n1
.

Hence,
Ss(n1q1)

n1q1
≥ x+ Ss(n1)/n1

2
.

We may now take n2 = n1q1 and repeat the process, finding a q2 so that

x >
Ss(n2q2)

n2q2
≥ x+ Ss(n1)/n1

2
.

Since x−Ss(nj)/nj ≤ (x−Ss(nj−1)/nj−1)/2, the values Ss(nj)/nj converge to x. Since
x was arbitrary, this shows {Ss(n)/n} is dense in [0,∞).

3.2 Continuous distribution function: an analytic approach

Note: there is a mistake in this section: the distribution functions
of σ(n)/n and Sσ(n)/n are both purely singular. The main result
still holds, as discussed in the next section.

In this and the following section, we present two proofs that the function Ss(n)/n
has a continuous a.d.f. Both proofs will make use of the existence of distribution func-
tions for the functions σ(n)/n and Sσ(n)/n; however, they will vary in their approach.
The proof presented in this section will make use of the analytic properties of the distri-
bution functions for σ(n)/n and Sσ(n)/n, as well as techniques for the manipulation of
random variables found in probability theory. The proof presented in the next section,
by contrast, will make use of results by Lebowitz-Lockard and Pollack from [9], which
are established through explicitly arithmetic techniques.

We present both proofs as they represent a common difference of approach in prob-
abilistic number theory. One approach uses the translation from arithmetic problems
into probabilistic problems to bring to bear the tools of analysis, and then the desired
arithmetic result is translated back from the probabilistic theorem. Another approach
is to derive the result by purely arithmetic methods from the probabilistic formulation.

We now proceed with the main result of this section.
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Theorem 3.3. The function Ss(n)/n has a continuous a.d.f.

Proof. Recall from the preceding section that Ss(n) = Sσ(n) − σ(n). Our method
for showing that Ss(n)/n has a continuous distribution function will then be to show
that the distribution functions for Sσ(n)/n and σ(n)/n are absolutely continuous, and
then we can use a standard result from probability theory to express the asymptotic
distribution of Ss(n)/n.

By arguments similar to Corollary 2.13, both the functions σ(n)/n and Sσ(n)/n
have continuous asymptotic distribution functions. Let these distribution functions be
F and G, respectively, and note that both F and G are increasing on [1,∞). Now, both
the additive functions log σ(n)/n and logSσ(n)/n also have continuous distribution
functions, given respectively by F (ex) and G(ex). By Theorem 2.12, these distribution
functions are either absolutely continuous or purely singular. However, since these
functions are increasing for all x, they cannot be singular, and so must be absolutely
continuous.

Since these functions are absolutely continuous, they admit derivatives f, g almost-
everywhere, and satisfy

F (x) =

∫ x

1
f(y) dy G(x) =

∫ x

1
g(y) dy.

We recall a standard theorem of probability theory (see for example [18, §6.3]) that if
Z = X + Y then

fZ(z) =

∫ ∞

−∞
fX(t)fY (z − t) dx.

Thus, there exists a continuous a.d.f. H(x) for Ss(n)/n, and it satisfies

H(x) =

∫ x

0

∫ −1

−∞
g(t− y)f(−y) dy dt.

3.3 A discrete method

We now present another proof of Theorem 3.3. This proof will make use of concepts
and theorems from [9]. If f is a real-valued arithmetic function, we say f clusters around
the real number x if there exists a real number d > 0 such that for all ε > 0,

d{n : x− ε < f(n) < x+ ε} ≥ d.

If f does not cluster around any x, we say f is nonclustering. Recall that in Example
2.10 we showed that if f has a continuous a.d.f. F , then f is nonclustering. In fact, the
converse holds.

Lemma 3.4. If the arithmetic function f has an a.d.f. F , and if f is nonclustering,
then F is continuous.

Proof. Recall that F is the pointwise limit of the “partial” distribution functions FN

defined as

FN (x) =
#{n ≤ N : f(n) ≤ x}

N
.
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Thus, we have

F (x+ ε)− F (x− ε) = lim
N→∞

FN (x+ ε)− FN (x− ε)

= d{n : x− ε < f(n) ≤ x+ ε}
≤ d{n : x− ε < f(n) < x+ ε}.

Thus, by the assumption that f is nonclustering, as ε→ 0, we have F (x+ε)−F (x−ε) →
0. Therefore, F is continuous.

We will use the following two theorems, which appear as Theorem 1 and Proposition
5 in [9], respectively.

Theorem 3.5 (Lebowitz-Lockard and Pollack). Let f1, ..., fk be multiplicative arith-
metic functions taking values in the nonzero real numbers and satisfying the following
conditions:

1. fk does not cluster around 0

2. for all i < j with i, j ∈ {1, 2, ..., k}, the function fi/fj is nonclustering.

3. for each i, whenever p and p′ are distinct primes, we have fi(p) ̸= fi(p
′).

Then for all nonzero c1, ..., ck ∈ R, the arithmetic function F := c1f1 + · · · ckfk is
nonclustering.

Theorem 3.6 (Lebowitz-Lockard and Pollack). Let f1, . . . , fk be positive-valued multi-
plicative functions each possessing a distribution function. Then for any c1, . . . , ck ∈ R,
the function c1f1 + · · ·+ ckfk also has a distribution function.

Both of these theorems are proven by explicit estimation of upper densities by
using the arithmetic properties of the functions fi. This is in contrast to the previous
section, in which the analytic properties of the distribution functions were used. We
now proceed with another proof of Theorem 3.3.

Proof of Theorem 3.3. Recall that we can write

Ss(n) =
∑
d|n

(σ(d)− d) = Sσ(n)− σ(n).

Thus,
Ss(n)

n
=
Sσ(n)

n
− σ(n)

n

is a difference of two multiplicative functions.
Let f1 = Sσ(n)/n, f2 = σ(n)/n, and F = f1 + (−1)f2. We have previously stated

that f1 and f2 have distribution functions, so by Theorem 3.6 above, F has an a.d.f.
To show that the distribution function for F is continuous, by Lemma 3.4 it suffices to
show that it satisfies the hypotheses of Theorem 3.5. We may apply Theorem 2.12 to
the additive functions log f1, log f2, and log(f1/f2) shows that f1, f2 and f1/f2 have
continuous a.d.f.s. Thus, conditions (1)-(3) of Theorem 3.5 are satisfied. Therefore, F is
non-clustering. Since a distribution function for an arithmetic function F is continuous
precisely when F is non-clustering, it follows that F is continuous.
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3.4 Mean values of Ss(n) and Ss(n)/n

In this section we will compute the mean values Mx(Ss(n)) and M(Ss(n)/n). These
results will ground our discussion in the following section of uniform estimates for the
moments of Ss(n)/n. To begin with, notice that the mean value defined in §2.2 is linear:
if f and g are arithmetic functions and α, β are real numbers then

Mx(αf + βg) =
1

x

∑
n≤x

αf(n) + βg(n)

=
α

x

∑
n≤x

f(n) +
β

x

∑
n≤x

g(n)

= αMx(f) + βMx(g).

Thus, from our results from §2.2 we can immediately derive the following.

Theorem 3.7. We have

Mx(Ss(n)) =
ζ(2)(ζ(2)− 1)

2
x+O((log x)2).

Proof. By linearity of Mx, we compute

Mx(Ss(n)) =Mx(Sσ(n)− σ(n))

=Mx(Sσ(n))−Mx(σ(n))

=
ζ(2)(ζ(2)− 1)

2
x+O((log x)2).

We will derive our computation of M(Ss(n)/n) by applying partial summation.
Partial summation is a discrete analogue of integration by parts. Given a sequence
of integers (an) and a differentiable function f , let A(x) =

∑
n≤x an. Then partial

summation states that∑
n≤x

anf(n) = A(x)f(x)−
∫ x

1
A(t)f ′(t) dt.

Theorem 3.8. We have

M(Ss(n)/n) = ζ(2)(ζ(2)− 1).

Proof. Consider the sum
∑

n≤x Ss(n)/n. Applying partial summation to this sum with
an = Ss(n) and f(n) = 1/n we find∑
n≤x

Ss(n)

n
=

1

x

∑
n≤x

Ss(n) +

∫ x

1

∑
n≤t Ss(n)

t2
dt

=Mx(Ss(n)) +

∫ x

1

Mt(Ss(n))

t
dt

=
ζ(2)(ζ(2)− 1)

2
x+O((log x)2) +

∫ x

1

(
ζ(2)(ζ(2)− 1)

2
+O((log t)2/t)

)
dt

=
ζ(2)(ζ(2)− 1)

2
x+O((log x)2) +

(
ζ(2)(ζ(2)− 1)

2
t

)∣∣∣∣x
1

+O((log t)3
∣∣x
1
)

= ζ(2)(ζ(2)− 1)x+O((log x)3).

Thus, M(Ss(n)/n) = limx→∞
1
x

∑
n≤x Ss(n)/n = ζ(2)(ζ(2)− 1).
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3.5 Estimates of the moments of Ss(n)/n

Analogous to the mean value, the kth moment of an arithmetic function f is defined
to be

lim
x→∞

∑
n≤x f(n)

k

x
,

when the limit exists. The computation of the moments of an arithmetic function can
give a more complete set of statistics describing that function’s behavior, and moment
estimates have been computed for several arithmetic functions of interest.

In this section, we aim to estimate the moments of Ss(n)/n, i.e., the quantities

µk = lim
n→∞

1

n

n∑
i=1

(Ss(i)/i)
k.

We will make use of a powerful tool known as Wintner’s Mean Value Theorem for
multiplicative functions [17, Theorem 1, p. 138].

Theorem 3.9 (Wintner’s Mean Value Theorem). If g is a multiplicative function
satisfying

i.
∑
p

|g(p)− 1|
p

<∞

ii.
∑
p

∞∑
ν=2

∣∣g(pν)− g(pν−1)
∣∣

pν
<∞

then the mean value of g exists and is finite.

There are a few other facts we will make use of to establish our estimates for µk.
We will use the following expressions for the functions σ and Sσ, derivations for which
can be found in the Appendix:

σ(pν) = pν
(
1 +

1

p− 1

)
− 1

p− 1
,(1)

Sσ(p
ν) = pν

(
1 +

1

p− 1

)2

− ν + 1

p− 1
− p

(p− 1)2
.(2)

Additionally, let µ′k be the kth moment of the function n/φ(n). We will use the esti-
mates for µ′k appearing in the proof of [10, Proposition 4.3], in particular,

logµ′k ≪ k log log k.

We may now proceed with the result.

Theorem 3.10. The moments µk exist and are finite. Moreover, they satisfy

logµk ≪ k log log k.
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Proof. First, by the binomial formula, we get

(Ss(i)/i)
k =

(Sσ(i)− σ(i))k

ik

=
1

ik

k∑
j=0

(
k

j

)
(−1)j(σ(i))j(Sσ(i)

k−j).

Each of the functions hk,j(i) = (σ(i))j(Sσ(i))
k−j/ik is multiplicative, and below we

will use Wintner’s Mean Value Theorem to show that each has finite mean. From the
existence of mean values for the hk,j , we conclude that the moments µk exist and are
finite.

For sum i. in Wintner’s Mean Value Theorem, note that using expression (2)

hk,j(p)− 1 ≤
(
Sσ(p)

p

)k

− 1

<

(
1 +

1

p− 1

)2k

− 1

=
p2k − (p− 1)2k

(p− 1)2k

=
p2k − (p2k − 2kp2k−1 + terms of lower degree)

(p− 1)2k

≪ p2k−1

(p− 1)2k

≪ 1

p
.

Thus, for each hk,j , the terms of sum i. are O(1/p2), and so the sum converges. For
the double sum ii., we begin by using expressions (1) and (2) to estimate

hk,j(p
ν) =

(
σ(pν)

pν

)j(Sσ(pν)
pν

)k−j

=

((
1 +

1

p− 1

)
+O

(
1

pν+1

))j
((

1 +
1

p− 1

)2

+O

(
ν

pν+1

))k−j

=

(
1 +

1

p− 1

)2k−j

+O

(
ν

pν+1

)
.

Thus, the numerator of the inner sum ii. is O(νp−(ν+1)). Therefore, the terms of
the inner sum are O(νp−(2ν+1)). By taking the derivative of the geometric series∑∞

ν=2 p
−(2ν+2) it can be verified that

∞∑
ν=2

ν

p2ν+1
=

2p2 − 1

(p2 − 1)2p3
.

So, we conclude that the inner sum converges to a value that is O(p−5). Therefore, the
double sum converges. Having checked that the hypotheses of Wintner’s Mean Value
Theorem hold, we conclude that each hk,j has a finite mean value.
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By our computations above, Ss(n)/n ≤ Sσ(n)/n ≤ (n/φ(n))2, so we can use the
estimates for n/φ(n) to deduce that

logµk ≤ logµ′2k

≪ 2k log log 2k

≪ k log log k,

as desired.

A consequence of Theorem 3.10 is yet another method of showing that Ss(n)/n has
a distribution function. By our computations above, we also have

logµ2k ≪ k log log k,

so there exists some index k0 and constant A so that log µ2k ≤ Ak log log k for all
k ≥ k0. Hence, for all k ≥ k0 we have

µk ≤ exp(Ak log log k)

= (log k)Ak.

Therefore, for k ≥ k0,

µ
1/2k
2k

k
≤ (log k)A/2

k
.

Thus, the condition lim supk→∞ µ
1/2k
2k /k < ∞ needed to apply Theorem 3.3.12 from

[4] is satisfied, and therefore Ss(n)/n has an a.d.f. As in Section 3.3, the results of
Lebowitz-Lockard and Pollack suffice to show this a.d.f. is continuous.

Appendix

In this section we will derive the expressions for σ(n)/n and Sσ(n)/n used in §3.5:

σ(pν) = pν
(
1 +

1

p− 1

)
− 1

p− 1
,(1)

Sσ(p
ν) = pν

(
1 +

1

p− 1

)2

− ν + 1

p− 1
− p

(p− 1)2
.(2)

We have

σ(pν) =

ν∑
i=0

pi

=
pν+1 − 1

p− 1

= pν
p

p− 1
− 1

p− 1

= pν
(
1 +

1

p− 1

)
− 1

p− 1
.
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For the second derivation we have

Sσ(p
ν) =

ν∑
i=0

σ(pi)

=
∑
i=0

(
pi
(

p

p− 1

)
− 1

p− 1

)

=
1

p− 1

(
ν∑

i=0

pi+1 −
ν∑

i=0

1

)

=
1

p− 1

(
pν+2 − p

p− 1
− (ν + 1)

)
= pν

(
1 +

1

p− 1

)2

− ν + 1

p− 1
− p

(p− 1)2
.
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