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Ring Theory 2
Several important bits and bobs, a long section on localization

by Ivan Aidun

These are notes interspersed with exercises. The purpose of these notes is to be more fleshed out

than Evan Dummit’s old notes, but shorter and more focused than a textbook treatment. Halfway

between Dummit and Dummit and Foote, so to speak. I hope these are helpful to you!

Conventions

In these notes, all rings will be commutative with unity. Altho some of the statements general-

ize (with more or less effort) to the noncommutative setting, we won’t be concerned with stat-

ing/proving the most general version.

The universal property of quotient rings

Quotient rings (or groups, or modules) have a special property which not everybody sees/appreciates

in their first algebra class. I’m going to spend a little space discussing htis property because of how

fundamental it is.

Theorem. Let R,R′ be rings, I an ideal of R, and q : R → R/I the quotient homomorphism. If

ϕ : R → R′ is a homomorphism, and kerϕ ⊃ I, then there is a unique map ϕ̃ : R/I → R′ such that

ϕ = ϕ̃ ◦ q.
Concretely, the map ϕ̃ sends the coset r + I to ϕ(r). The content of the statement is mostly

verifying that this is a well-defined function.

Of course, given any map ψ : R/I → R′, we can readily obtain a map R → R′ whose kernel

contains I by taking the composition ψ ◦ q. So, what this theorem is saying is that in fact, there is

a bijection between the set of homomorphisms R → R′ whose kernel contains I, and the set of all

homomorphisms R/I → R′. Here’s another way of thinking about things: suppose somebody gave

you a (admittedly very bizarre) puzzle or a brain teaser by giving you a specific ϕ : R→ R′ satisfying

kerϕ ⊃ I, and saying “I’m thinking of a homomorphism ψ : R → R′, and this homomorphism

satisfies that ψ ◦ q = ϕ, can you figure out what ψ is?”. What this theorem says is that this is a

very well-designed puzzle, in the sense that there is exactly one answer, and the puzzle-maker has

given you exactly the right amount of information to figure out what the answer is, no more no less.

On a practical level, I think about the importance of this theorem in the following way. As a set,

the quotient ring R/I is pretty unwieldy. Manipulating cosets is not easy or intuitive, and there’s

an annoying indeterminacy about cosets where two seemingly different representatives might give

the same coset. For example, 1+2Z = 3+2Z. What the above theorem tells you is that if you want

to define a homomorphism from a quotient ring R/I to some other ring R′, then you can instead

specify what that homomorphism should look like on elements of R, and all you have to do to make

sure it descends to the quotient is verify that ker ϕ̃ ⊃ I, which is often an easy condition to check.
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This theorem is perhaps best illustrated by drawing a picture containing all the homomorphisms

involved. In diagram form, this theorem looks like this:

R

R/I R′

q
ϕ

ϕ̃

A restatement of the theorem is “for all homomorphisms ϕ such that kerϕ ⊃ I, there exists a unique

homomorphism ϕ̃ making the above diagram commute”. (To say a diagram commutes just means

that composing the homomorphisms along each directed path gives the same thing in the end, so

in this diagram it says that ϕ = ϕ̃ ◦ q.)

The lattice theorem: ideals in a quotient

The lattice isomorphism is often glossed over in a first course in ring theory. The third isomorphism

theorem stated that we can find ideals in a quotient ring R/I by taking ideals J ⊃ I and passing

to the quotient J/I. The lattice isomorphism theorem asserts that this process in fact produces a

bijection

{ideals of R containing I} ∼→ {ideals of R/I.}

It also states that this correspondence has a few further properties:

1. This correspondence preserves the subset relation: if J and J ′ are ideals of R containing I,

then J ⊂ J ′ iff then J/I ⊂ J ′/I.

2. As a consequence, this correspondence preserves ideal sums and intersections: if J and J ′ are

as above, then (J + J ′)/I = (J/I) + (J ′/I) and (J ∩ J ′)/I = (J/I) ∩ (J ′/I) as ideals of R/I.

3. This correspondence also preserves ideal products: if J and J ′ are as above, then (J/I)(J ′/I) =

(JJ ′)/I as ideals of R/I.

4. As a further consequence of 1. and 3., this correspondence preserves prime and maximal ideals:

if P is a prime/maximal ideal of R containing I, then P/I is a prime/maximal ideal of R/I,

and all prime/maximal ideals of R/I arise in this way.

This is called the “lattice” isomorphism theorem because we can imagine the ideals of R in a

lattice indicating their subset relationships. For example, (part of) the lattice of ideals in Z is shown

in Figure 1.

The lattice isomorphism theorem says that the lattice of ideals for R/I is exactly the part of

this lattice that lies above the ideal I. So, for example, the lattice for Z/6Z is shown in Figure

2, deliberately illustrated to highlight the similarity in structure to the ideals of Z above the ideal

(6). Furthermore, the lattice theorem says this correspondence also descends prime and maximal

ideals, so for example the prime ideals of Z/6Z are the ideals (2) and (3), because these descend

from prime ideals of Z.
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(1)

(2) (3) (5) . . .

(4) (6) (9) (10) (15) . . .

...
...

...
...

...
...

(0)

Figure 1: The lattice of ideals in Z

(1)

(2) (3)

(0)

Figure 2: The lattice of ideals in Z/6Z

Exercise 1. (January 2020 Problem 3(b), August 2023 Problem 1 (d)) Give an example

of a ring with finitely many elements that has exactly three prime ideals. (In 2023, the prob-

lem didn’t specify “with finitely many elements”. Can you find an example with infinitely many

elements?)

The Chinese Remainder Theorem

Background on solving congruences

The Chinese Remainder Theorem (CRT) is one of my favorite theorems. The name comes because

of computations appearing in an ancient Chinese mathematical treatise, the Sunzi Suanjing . Eric

Bach, here at UW, often calls it “Sunzi’s theorem” as a way of crediting the original author, rather

than just having a name attributed to his nationality.

The original scope of the CRT is solving systems of congruence relations. For example, consider

the system

x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 4 (mod 7).
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Are there any integers x which satisfy these relations? The answer in this case is yes, for example,

x = 11 works, as does x = 53 and x = 95. However, consider the system

x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 4 (mod 8).

Now the answer is no, because if x ≡ 1 (mod 2), then x must be odd, but if x ≡ 4 (mod 8)

then x must be even. What differs between the two examples is that the integers {2, 3, 7} are

“multiplicatively independent” of one another, by virtue of being pairwise coprime, whereas the

integers {2, 3, 8} are not.

Theorem (CRT, congruence form). A system of congruences

x ≡ a1 (mod m1)

...
...

x ≡ an (mod mn)

where the mi are pairwise coprime always has an integer solution. Moreover, the set of solutions

forms a residue class modulo M =
∏

imi.

More generally, if the mi are not pairwise coprime, then a solution exists iff for all pairs i, j we

have that ai ≡ aj (mod gcd(mi,mj)). In this case, the set of solutions forms a residue class modulo

M = lcm{mi}i

A more modern presentation

The statement of the CRT given above is actually a bit difficult to prove by purely elementary

means, and also it would be a weird thing to include in these notes if there wasn’t a way it applied

to ring theory more generally. The modern way to interpret it is to consider the ring homomorphism

Z →
∏n

i=1 Z/miZ which sends an element a ∈ Z to the tuple of its reductions modulo each mi:

(a mod m1, a mod m2, . . . , a mod mn). The first statement of the CRT above asserts that this map

is surjective, and that its kernel is exactly the ideal MZ, so by the first isomorphism theorem we

get an isomorphism of rings Z/MZ ∼=
∏

i Z/miZ.
In the more general setting where the mi need not be coprime, for every pair i, j we get a group

homomorphism Z/miZ × Z/mjZ → Z/ gcd(mi,mj)Z which takes the pair (a mod mi, b mod mj)

to a − b mod gcd(mi,mj). (This is not a ring homomorphism because the multiplicative identity

in Z/miZ × Z/mjZ is (1, 1), which gets sent to 0.) The second statement above is equivalent to

saying that a tuple (a1 mod m1, . . . , an mod mn) is in the image of the map Z/MZ →
∏

i Z/miZ
exactly when it is in the kernel of all of these

(
n
2

)
difference-mod-gcd maps.

Rephrasing the statement in these terms both makes it easier to prove, and also makes it easier

to generalize. In the first set of notes, we saw analogs for all of the above statements in terms of
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ideals in an arbitrary ring: gcd corresponds to ideal sum, lcm corresponds to ideal intersection. We

are therefore able to state a version of the CRT valid for an arbitrary ring.

Theorem (CRT, general ring version). Let R be a ring and I1, . . . , In be ideals. The ring homo-

morphism

R
π−→

n∏
i=1

R/Ii

r 7→ (r mod I1, . . . , r mod In)

has kernel
⋂n

i=1 Ii, so by first isomorphism theorem we get an injective ring homomorphism

R⋂
i Ii

π̃−→
∏
i

R/Ii.

Furthermore, we have a group homomorphism (but not ring homomorphism, as discussed above)∏
i

R/Ii
d−→

∏
i ̸=j

R/(Ii + Ij)

(a1, . . . , an) 7→ (ai − aj mod Ii + Ij)i ̸=j ,

and we have that ker d = imπ.

In particular, if Ii + Ij = (1) for every pair i, j, then π̃ is an isomorphism.

Exercise 2. Prove that the group homomorphism d : R/I × R/J → R/(I + J) defined in the

statement above is a well-defined function.

The payout of the CRT is that we can sometimes decompose a ring into a direct product of

simpler rings. In particular, the comment at the end of the statement of the general ring CRT

indicates we can do this if we have the condition Ii + Ij = (1). By analogy with Z, if two ideals

I, J ⊂ R satisfy I + J = (1), those ideals are called coprime, or comaximal (I slightly prefer the

latter, but the former is more common).

Exercise 3. Prove that if I and J are coprime ideals, then IJ = I ∩ J .

As a short example of a kind of commutative algebra calculation that gets simplified by CRT,

consider the ring C[x]/(x2 − 1). We can factor x2 − 1 = (x − 1)(x + 1), which also gives us a

factorization on the level of ideals: (x2−1) = (x−1)(x+1). Also, the ideals (x−1) and (x+1) are

coprime, since x− 1 and x+ 1 are distinct irreducibles and C[x] is a PID. Thus, CRT tells us that

C[x]
(x2 − 1)

=
C[x]

(x− 1)(x+ 1)
=

C[x]
(x− 1) ∩ (x+ 1)

∼=CRT
C[x]

(x− 1)
× C[x]

(x+ 1)
.

This is a simpler ring to understand, because C[x]/(x± 1) ∼= C.
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Exercise 4. Above, we verified that (x− 1) and (x+1) are coprime ideals by appealing to the fact

that they are generated by distinct irreducibles in a PID.

(a) Prove that if R is a PID, and f, g are distinct irreducible elements of R, then (f, g) = (1).

(b) On the other hand, give an example of f, g ∈ C[x, y] such that gcd(f, g) = 1 but (f, g) ̸= (1).

Comment. If you know a typed programming language, you will be dismayed that in my general

statement of the CRT, I seem to be mixing functions of the type ring homomorphism with functions

of the type group homomorphism. I’m gonna get a compilation error! To make sure my theorems

compile correctly, I technically should say that everything is a homomorphism of R-modules, and

some of those also happen to be homomorphisms of R-algebras. But this is a little bit of a piddling

point.

Exact sequence formulation

When I was taking 742, Daniel Erman told me the following way to think about the CRT in the case

of two ideals. I’m going to write it in terms of exact sequences, but I will not define exact sequences

until the module theory notes. The CRT asserts that the following sequence of morphisms is exact

0 → R/(I ∩ J) π̃−→ R/I ×R/J
d−→ R/(I + J) → 0.

We have an analogy that R/I and R/J are like two subsets of some set S, R/(I ∩ J) is like the

intersection of the two sets, and R/(I+J) is like their union. In this analogy, R/I×R/J is like the

disjoint union of the two sets, which is what you would get if you took two disjoint copies of S, and
cut out R/I from one of them and R/J from the other one. What the CRT is saying is that if we

take these two disjoint copies, and glue them together along the intersection R/(I ∩ J), we would

exactly reconstruct the union R/(I + J). (Algebraic geometers will object that I should have told

you that R/(I ∩ J) is like a union and R/(I + J) is like an intersection.)

You see ideas similar to this in Topology, where the Mayer-Vietoris sequence looks very similar

to the above sequence, and encodes information about intersections, disjoint unions, and unions.

The van Kampen theorem does something similar, altho it doesn’t have a nice formulation in terms

of a sequence.

Noetherian Rings

All of the rings discussed so far have had a nice property called the ascending chain condition

(ACC), which was first “isolated” by Emmy Noether in her work on invariant theory. In her honor,

rings with this property are called Noetherian rings (sometimes not capitalized, the same way we

sometimes don’t capitalize abelian even tho it is named after Abel). The condition goes like this: a

ring satisfies the ascending chain condition if any (possibly infinite) chain of ideals

I1 ⊂ I2 ⊂ I3 ⊂ . . .
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eventually stabilizes. That is, there exists an integer N such that for all n > N , In = IN .

You should think of this in the context of Z or C[x]. Since those are PIDs, we can instead look

at the generators of the ideals, and (rn) ⊂ (rn+1) means that rn+1 | rn. So, in these contexts, the

ACC says that we can’t have an infinitely long chain of divisibilities . . . rn | rn−1 | · · · | r1. This

makes sense in Z because in that case the divisors have to get progressively smaller, and in C[x]
they have to have lower and lower degree. So, a ring being Noetherian is a kind of “finiteness”

condition, and it plays a similar role for general rings that well-orderedness/induction plays for Z.
In general, what kind of thing does the ACC rule out? The standard example of a non-Noetherian

ring is the polynomial ring in infinitely many variables C[x1, x2, . . . ]. This ring has an infinitely

ascending chain of ideals (x1) ⊂ (x1, x2) ⊂ (x1, x2, x3) ⊂ . . . . The ascending chain condition doesn’t

allow this kind of perverse behavior.

Exercise 5.

(a) Prove that in any Noetherian ring, every ideal can be generated by finitely many elements.

(b) In the first set of notes, we proved that any PID is Noetherian. Suppose more generally that a

ring R has the property that every ideal can be finitely generated. Prove that R is Noetherian.

(c) (January 2023 Problem 1 (e), modified) True or False: any ideal I ⊂ C[x, y] can be

generated by (at most) 2 elements.

Exercise 6.

(a) Suppose R is a commutative Noetherian ring, and I ⊂ R is an ideal. Prove that R/I is

Noetherian.

(b) If R is Noetherian, and R′ is a subring of R, it is not necessarily true that R′ is also Noetherian!

Prove this by finding a subring of C[x, y] that is not Noetherian. (Hint: use the non-Noetherian
example above as inspiration. Try to find infinitely many elements so that no element can be

obtained from the rest via sums and products. Think about the degrees with respect to x and

to y.)

Exercise 7. (Hilbert’s basis theorem) The goal of this exercise is to prove that if R is Noethe-

rian, so too is R[x]. We will do this by proving that any ideal of R[x] is finitely generated, which is

sufficient by Exercise 5 (c).

(a) Let I ⊂ R[x] be any ideal. Prove that the set of leading coefficients of polynomials in I is an

ideal J ⊂ R.

(b) Suppose that I is not finitely generated, and let f1, f2, . . . be elements such that fn ∈ I,

fn /∈ \(f1, . . . , fn−1), and fn has minimal degree among polynomials with those two properties.

Define the ideals In = (f1, . . . , fn) ⊂ R[x], and define Jn to be the ideal of R generated by the

leading coefficients of f1, . . . , fn. Prove that JN = J for some N .
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(c) Let N be an integer such that JN = J . Prove that fN+1 ∈ IN . Since this is a contradiction

with the construction of the fs, conclude that I is finitely generated.

There is a complementary condition to the ACC called the descending chain condition

(DCC), and rings satisfying the DCC are called Artinian rings (same thing about the capitaliza-

tion). Despite the formal similarity, a ring being Artinian is a much more restrictive class of rings.

In particular, every Artinian ring is in fact Noetherian, altho proving this is not straightforward.

As an example, Z is Noetherian but not Artinian, while for any n > 1, Z/nZ is both Noetherian

and Artinian.

Comment. Artinian rings were first discussed in the context of central simple algebras, the classi-

fication of which is the subject of the Wedderburn-Artin theorem. It is possible that in the notes

about modules I will include some further comments on this.

Exercise 8. Suppose R is a commutative Artinian ring. Prove that any prime ideal P ⊂ R is

maximal. (Hint: prove that R/P is a field.)

Fields of fractions and Gauss’ Lemma

Given an integral domain R, there’s an important field attached to R called its field of fractions,

denoted FracR, which consists of all fractions r/s where r, s ∈ R and s ̸= 0. Addition and

multiplication work just the way you think they should for fractions. For example, the field of

fractions of Z is Q. An example you might not already be familiar with is the field of fractions of

C[x] is C(x), the field of rational functions. Next section we will discuss localization, of which the

field of fractions is just one example.

The field of fractions is useful because often things are easier to prove for fields, and sometimes

we can transfer properties from the field of fractions back to the original ring R. For example, we

have already proven that k[x] is a Euclidean domain whenever k is a field. The next exercise is to

prove Gauss’ lemma, a super important lemma which, among other things, shows that if R is a

UFD, then so is R[x]. Hence, so is R[x1, . . . , xn] for all n. In particular, this proves the assertions

above that Z[x] and C[x, y] are UFDs.

(I feel sometimes that whenever there’s a hard proof in ring theory, the proof always reduces to

either Gauss’ lemma or the Cayley-Hamilton theorem, or both!)

Exercise 9. (Gauss’ lemma)

(a) Let R be a UFD. Given a polynomial f ∈ R[x], the content of f , cont(f), is the gcd of all the

coefficients in f . Prove that cont(fg) = cont(f)cont(g).

(b) A polynomial such that cont(f) = 1 is called primitive. Show that fg is primitive if and only

if f and g are primitive.

(c) Let K = FracR. Prove that a primitive polynomial f ∈ R[x] is irreducible if and only if it is

irreducible when considered as an element of K[x].
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(d) Prove that R[x] is a UFD.

Comment. There are actually many related results that get called “Gauss’ lemma”, some of which

can look significantly different from the formulation above.

Localization

This final section is the longest, and most important in these notes. Localization refers to the process

of adding fractions to a ring. Altho this is a very simple premise, this turns out to enjoy many useful

formal properties that makes it very helpful, which we will begin exploring here, and will continue

to discuss in the notes on modules. If you’re curious about why this process is called “localization”,

there are two optional exercises in the last section attempting to illustrate the connection between

fractions and “local” information, in a geometric or topological sense.

We already know some examples of localization, because, as previously mentioned, taking an in-

tegral domain to its field of fractions is a localization. The procedure we will describe will generalize

this in two directions:

1. We will be able to talk about fractions in an arbitrary ring, no longer restricted to just integral

domains.

2. We will have the option to add only some denominators and not others, and this flexibility

will be valuable.

The next exercise is an opportunity for you to reflect on what the algebraic implications are of

adding in denominators.

Exercise 10.

(a) Consider the ring Z[12 ], which consists of the integers, the fraction 1
2 , and the minimum of

other numbers which must be in the set in order for it to be a ring. Describe the set of all

possible denominators a fraction in this ring can have.

(b) Consider the ring R = Z/12Z. As in the previous example, I want to be able to make sense of

fractions with 2 in the denominator, but now it’s more complicated because 2 is a zero-divisor.

Denote the ring where I can take denominators of 2 by R[12 ].

(i) Use your knowledge of how to manipulate fractions to convince yourself that 3
2 = 0 in

R[12 ]. (Hint: you can multiply the top and bottom of a fraction by the same number to

get an equivalent fraction.)

(ii) On the other hand, convince yourself that if n ∈ R is not in the ideal (3), then n
2 ̸= 0 in

R[12 ].

(iii) The ring R[12 ] is finite. Use what you deduced above to figure out how many inequivalent

elements it has.
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(c) Still thinking about R = Z/12Z, what ring would we get if we decided to take 5 in the

denominator? What would we get if we decided to take 6 in the denominator?

In general, what do we need from a set of possible denominators S ⊂ R in order for it to make

sense to add in all those denominators to our ring? We always want to be able to have a denominator

of 1, so we will demand that 1 ∈ S always. In order for the familiar property
(
r1
s1

)(
r2
s2

)
= r1r2

s1s2
to

hold, we need s1s2 ∈ S for any s1, s2 ∈ S. Any set S that satisfying these two properties is called

multiplicatively closed. Given a multiplicatively closed subset S ⊂ R, we define a new ring S91R

in imitation of the definition of the rational numbers, with one twist:

• The elements of S91R are symbols of the form r
s where r ∈ R and s ∈ S.

• You might expect two symbols r1
s1
, r2s2 to be equal if their cross difference vanishes, r1s2−r2s1 =

0. However, this is the twist: we actually say they are equal if there is some s ∈ S such that

s(r1s2 − r2s1) = 0.

• Multiplication is defined as you would expect. Addition is defined by taking common denom-

inators:
r1
s1

+
r2
s2

=
r1s2 + r2s1

s1s2
.

I think about the modification in the second bullet point like this. We all agree how addition and

subtraction of fractions should work, and we all agree that a
b = sa

sb for any s ∈ S. The change in

the second bullet point over what you would naively expect is there to account for situations where

you can chain these two rules to get unexpected results. In the example computed in Exercise 10

(b), we could have

4− 1 = 3 =
4 · 3
4

=
0

4
= 0,

so in fact we find that 4 = 1 once we allow in 1
2 .

Comment. The notation S is standard for a multiplicatively closed subset, and also as the name

of a second ring after R is taken. I’ve avoided using the latter so that I can have S always be

a multiplicatively closed subset. Some authors, such as Atiyah-Macdonald and also me in other

writings, adopt the French convention in which rings are A (for “anneau”), and further rings are

B,C, which has the added benefit of leaving S available to always be a multiplicatively closed

subset.

Example 1. Here are two very commonly used kinds of localization.

• Given a ring R and an element f ∈ R, the set S = {1, f, f2, . . .} consisting of all the powers

of f is multiplicatively closed. In this case, the localization S91R is commonly denoted by

either Rf or R[ 1f ]. The former is both more traditional and faster to write, while the latter

is much more unambiguous. When written Rf , it is commonly said aloud as “R localized at

(the element) x”, and when written R[ 1f ] it is said as “R adjoin 1
f ”.
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• Given a ring R and a prime ideal P , the set S = R \ P , all the elements of R that are not

in P , is multiplicatively closed. In this case, the localization S91R is denoted by RP , and

it is said aloud as “R localized at (the ideal) P”. Sometimes I have heard people say “R

localized away from P”, to emphasize that S is the complement of P . Exercise 11. Prove

that S = R \ P is multiplicatively closed. Prove that in RP , the ideal generated by the

elements of P , ⟨p1 : p ∈ P ⟩, is a maximal ideal.

As one example, if R is an integral domain, we have already seen that (0) is a prime ideal of R.

Then the localization R(0) is just the same thing as throwing in 1/r for every nonzero r ∈ R, which

is the same thing as taking the fraction field. So, Frac(R) = R(0).

Comment. Considering the element x ∈ C[x], note that the ideal (x) is prime. So, I can either form

the localization C[x]x or C[x](x), and these are two different rings! This is why in many cases I would

prefer to write C[x]x as C[x, x91]. What is worse, when R = Z, group theorists and topologists will

write Zn to mean the cyclic group Z/nZ, and number theorists will write Zp to mean the p-adic

integers (which are closely related to localization, but distinct). So, in the context of Z, you should

always write Z[ 1n ], and if you want to localize at (away from) the prime ideal (p), make sure you

include the parentheses: Z(p).

The localization homomorphism

Whenever you learn a way to get a new object from old objects, you should ask “how does this

interact with homomorphisms?”. In many respects, localization behaves a lot like a quotient ring.

There is a homomorphism R → S91R that takes r → r
1 . The quotient homomorphism R → R/I is

characterized by taking every element of I to 0 in the quotient. The localization homomorphism is

characterized by taking every element s ∈ S to a unit in the localization, which makes sense because,

after all, we’re explicitly adding in elements of the form 1
s . The localization homomorphism also has

a property similar to the one discussed above in the section The universal property of quotient

rings:

Theorem. Let R,R′ be rings, let S be a multiplicatively closed subset of R, and let ℓ : R → S91R

be the localization homomorphism. If ϕ : R → R′ is a homomorphism such that for every s ∈ S,

ϕ(s) is a unit in R′, then there is a unique map ϕ̃ : S91R→ R′ such that ϕ = ϕ̃ ◦ ℓ.
Concretely, the map ϕ̃ sends the fraction r

s 7→ ϕ(r)ϕ(s)91. As before, the content of the statement

is mostly verifying that this is a well-defined function.

The discussion of how to think about/interpret the similar property for quotient rings applies

equally well to this theorem. Similar to quotient rings, if we tried to write down functions out of

a localization on the level of the elements of the localization, it would be difficult because (1) the

localization can have many new elements that weren’t in the original ring, and (2) the elements

of the localization might have difficult-to-anticipate relationships between them, as we saw above

when we showed that 4 = 1 in (Z/12Z)[12 ]. This theorem gives us an alternative way of defining

these maps, which can be much easier to check in general.

Here is a diagram for the universal property of the localization homomorphism:

11
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R

S91R R′

q ϕ

ϕ̃

A restatement of the theorem is “for all homomorphisms ϕ such that ϕ(s) is a unit for all s ∈ S,

there exists a unique homomorphism ϕ̃ making the above diagram commute”.

Exercise 12.

(a) Let f, g ∈ R. Prove that R[ 1
fg ]

∼= R[ 1f ,
1
g ]. (Try doing this once using the definition of local-

ization, and once using the theorem above to construct homomorphisms in both directions,

then showing they are inverses. Reflect on how these two arguments feel different to think

about.)

(b) Prove that the localization homomorphism ℓ : R → S91R is injective if and only if S contains

no zero-divisors.

(c) Prove that the localization S91R is the zero ring if and only if 0 ∈ S.

Exercise 13. Give an example of a ring homomorphism ϕ : R → S, and a maximal ideal m ⊂ S

such that ϕ91(m) is not a maximal ideal of R. (Hint: this problem is in the section on localization.)

Ideals in a localization

There is an analog to the lattice isomorphism theorem for ideals in a localization.

Theorem. Let R be a ring, S a multiplicatively closed subset, and I an ideal of R that does not

meet S. That is, I ∩ S = ∅. Then the ideal S91I = ⟨ i1 : i ∈ I⟩ is a proper ideal of S91R, and

moreover every proper ideal of S91R can be obtained this way. This correspondence has the further

properties:

• It preserves the subset relation: if I ⊂ J , then S91I ⊂ S91J .

• It preserves prime ideals: if P is a prime ideal of R that does not meet S, then S91P is a prime

ideal of S91R.

When the localization is of the form RP , where P is a prime ideal, then often instead of writing

S91I people will write IP . Similarly, when the localization is of the form Rf , where f ∈ R is an

element, often people will write If . This is the main situation in which the notation Rf seems better

than the notation R[ 1f ], because nobody writes (or wants to write) I[ 1f ], and writing something more

apt like IR[ 1f ] is a bit cumbersome. (But people do write it, e.g. number theorists will write things

like 3Z[12 ] quite happily.)

The moral here is that if we add in a fraction 1
f , then we effectively eliminate all the ideals that

contain f , because now any ideal that contains f also contains f · 1
f = 1, and so is the unit ideal.

12
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So, for example, referencing our lattice of the ideals in Z from earlier, the lattice of ideals in Z[16 ]
is illustrated in Figure 3, where I have slashed out the ideals that have become the unit ideal after

localizing. Notice that any ideal divisible by only (2) and/or (3) has now become the unit ideal,

and several other ideals have merged, like (5) = (10) = (15) = (30).

(1)

(2) (1) (3) (1) (5) = (30) (7) = (42) . . .

(4) (1) (6) (1) (9) (1) (25) (35) . . .

...
...

...
...

...
...

(0)

Figure 3: The lattice of ideals in Z[16 ]

Exercise 14. (January 2020 Problem 3 (a), (c)) Let R be a commutative ring, I an ideal in

R, and S a multiplicative subset of R. There are two standard correspondences involving prime

ideals:

(i) Prime ideals in R/I are in bijection with prime ideals in R which contain I.

(ii) Prime ideals in S91R are in bijection with prime ideals in R which do not meet S.

(a) Prove (i) and (ii). (The original problem only asked for one or the other, but you should be

able to prove both.)

(c) Give an example of a subring of Q that has exactly three prime ideals.

Exercise 15. (August 2021 Problem 1 (a), (b)) On this problem, only the answer will be graded.

(a) Put R = Z/12Z. For which elements f ∈ R is the localization Rf = 0?

(b) Put R = Z/12Z. For which elements f ∈ R is the localization Rf a field? (Recall that the

zero ring is not a field.)

Local rings

A ring is called a local ring if it has exactly one maximal ideal. All fields are local rings (because

(0) is maximal in a field).

13
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Exercise 16.

(a) Suppose R is a local ring with unique maximal ideal m. Prove that any x ∈ R \m is a unit.

(b) Conversely, suppose that R is a ring, and I is an ideal of R with the property that every

x ∈ R \ I is a unit. Prove that R is local and I is its unique maximal ideal.

(c) Find an example of a quotient of Z or C[x] that is a local ring that is not a field.

(d) Let R be a ring, P a prime ideal. Prove that RP is a local ring with maximal ideal PP (using

the notation from above).

If fields are easiest rings to work with, local rings are for most things the second easiest rings to

work with, and if you do anything with commutative algebra, algebraic geometry, or the algebraic

side of number theory, you will encounter local rings of the form RP very frequently. A proof

strategy that is used very commonly goes like this:

1. First, prove a statement is true for fields. This is usually very easy.

2. Next, prove that the statement for fields implies the statement for local rings. If R is a local

ring with maximal ideal m, then R/m is called the residue field of R, and many properties

of the residue field can be lifted to R, for example by using Nakayama’s lemma (which will

be discussed more in the notes on modules).

3. Finally, prove that if R is an arbitrary ring, then the statement holds for R if and only if

it holds for all the rings RP , where P ranges over all prime ideals of R. This is usually the

hardest part of the process, and is frequently not true without pretty strong hypotheses on

the ring R.

Exercise 17. (January 2018 Problem 1) For this problem, your answer will be graded on cor-

rectness alone, and no justification is necessary.

(a) Give an example of a commutative ring R and a nonzero element f ∈ R where the localization

Rf = 0.

(b) Give an example of a commutative ring R and a nonzero element f ∈ R where the localization

map R→ Rf is neither injective nor surjective.

(c) Give an example of a local ring R and an element f ∈ R where Rf ̸= 0 but Rf is no longer a

local ring.

14
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What makes local rings “local”?

The following two exercises are optional. Their purpose is to give a hopefully enlightening exam-

ple showing in what sense “local rings” and “localization” can capture “local” information, in a

topological or geometric sense.

Exercise 18. (localization in geometry) Take the plane R2 with the usual topology via open

disks.

(a) For any open set U ⊂ R2, show that C(U), the set of continuous functions U → R, is a

commutative ring under the operations of pointwise addition and multiplication.

(b) For any f : U → R, show that f91(0) is a closed subset of U .

(c) Show conversely that for any closed subset K ⊂ U , there exists a function f : U → R such

that f91(0) = K. (Don’t spend too long on this, it’s not worth it to do it in great detail.)

(d) If U, V are open sets with V ⊂ U , then given any f ∈ C(U), we can restrict f to V to get a

function f |V ∈ C(V ). Show that this defines an injective ring homomorphism C(U) → C(V ).

(Notice that the map goes the opposite direction from the set inclusion!)

(e) If V is open, V ⊂ U , then U \V is a closed subset of U . Call this closed subset K. Show that

if f ∈ C(U) satisfies f91(0) ⊂ K, then f |V is a unit in C(V ). Thus, by restricting to a smaller

open set, we have added 1/f to the ring for all such f .

Exercise 19. (continuation of Ex. 18) Take again the plane R2.

(a) Let U ⊂ R2 be any open set containing the origin. Show that the set m0,U := {f ∈ C(U) :

f(0, 0) = 0}, the set of functions which vanish at the origin, is a maximal ideal of C(U). (Hint:

show that C(U) → R given by f(x, y) 7→ f(0, 0) is a ring hom.)

(b) Let U and V be any two open sets containing the origin, and declare a function f ∈ C(U) to

be equivalent to a function g ∈ C(V ) if there is some open set W ⊂ U ∩ V , 0 ∈ W , so that

f |W = g|W . That is, two functions are equivalent if they look the same once we zoom in close

enough to (0, 0).

Check that this is an equivalence relation on the set of pairs (U, f), where U is an open set

containing the origin, and f ∈ C(U).

(c) Define a ring C0 as follows: the elements of C0 are pairs (U, f), where U is an open set containing

the origin, and f ∈ C(U), subject to the equivalence relation above. The equivalence classes

under this relation are called germs of functions. To add or multiply two germs (U, f) and

(V, g), we pass to some smaller open set W ⊂ U ∩V , and then add or multiply f |W with g|W .

Prove that C0 is a local ring, whose unique maximal ideal consists of germs of the form (U, f),

where f ∈ m0,U . (Hint: prove that if a germ is not in m0,U , then it is a unit.)
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(d) In fact, prove that if U is an open set containing the origin, then C0 ∼= C(U)m0,U .

You should think of the germ of a function f as essentially remembering its Taylor expansion at

the origin (disregarding the fact that I stated the above for continuous rather than differentiable or

analytic functions). It remembers the value f(0, 0), and all the infinitesimal information about f ’s

behavior near 0, but it doesn’t remember the value of f(x) for any x ̸= 0. One could say that the

germ of f remembers all, and only, the local information about f near the point x = 0.

Notice that in the two proceeding exercises, it was never particularly important that the space

we were considering was R2, and that the functions were landing in R. In some sense, all we used

in the constructions was:

• the space R2 is a topological space,

• the ring R is a ring,

• for any two points x, y ∈ R2, there is a function f : R2 → R so that f(x) = 0 and f(y) ̸= 0.

Because of how lax these requirements are, similar constructions can be (and are) used to study

many different kinds of geometric objects from an algebraic perspective: manifolds, complex analytic

spaces, varieties, and more.
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