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Ring Theory 1
Examples to keep in mind, basic definitions, ideals, the isomorphism theorems

by Ivan Aidun

These are notes interspersed with exercises. The purpose of these notes is to be more fleshed out

than Evan Dummit’s old notes, but shorter and more focused than a textbook treatment. Halfway

between Dummit and Dummit and Foote, so to speak. I hope these are helpful to you!

User’s Guide

By my estimation, ring theory and module theory are both the most frequent qual questions (I

estimate about they make up about 2/5 of every qual), as well as some of the toughest questions.

For this reason, I have tried to make the notes on them thorough, at some cost to brevity, with the

goal that the thoroughness will help you if you have less background in ring theory already, and

will be a useful reference even if you already know more ring theory.

If you’ve already taken a course in ring theory, I would expect you to be familiar with most of

the things discussed in these notes. For such a person, I think the most important things in these

notes are:

• to know the basic properties of the three big examples

• the little bit of content discussed in the section on noncommutative ring theory, and

• the various examples and counterexamples that pop up throughout. (e.g. a UFD that is not a

PID, a prime ideal that isn’t maximal, ideals whose intersection is not equal to their product,

etc.)

The next set of notes will discuss, among other things, the lattice isomorphism theorem and

localization, which are both very important and appear on the qual quite frequently.

Conventions

In these notes, all rings will have unity, but may or may not be commutative, depending on the

section. As a reminder, a homomorphism R → R′ of unital rings is required to send 1R (the

multiplicative unit of R) to 1R′ (that of R′), and a subring R′′ ⊂ R is required to have the same

unit as R does, so that the inclusion R′′ ↪→ R is a unital ring homomorphism. These conventions

differ from the conventions in Dummit and Foote, where they allow rings without unity, and they

allow “subrings” of rings with unity to not have unity. In particular, they are happy to call ideals

a special kind of “subring”. I think these conventions were a little out of date at the time, and

nowadays I think it’d be hard to find authors who allow rings without unity.

Exercise 1. Find a subset of M2(R) which has the structure of a ring with unity under the opera-

tions of matrix addition and multiplication, but which is not a subring of M2(R).
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Examples

The three big ones

I think there are three main examples you should keep in mind for ring theory:

• the ring of integers Z,

• the ring of complex polynomials in one variable C[x],

• the ring of complex 2× 2 matrices M2(C).

Especially when we start talking about modules, it will be enlightening to be able to think about

what modules look like for these three examples. (In the past I haven’t emphasized non-commutative

rings enough, but when preparing these notes I realized they show up on the qual somewhat fre-

quently.)

Other good examples

Here are a few more rings you should have in your head for various examples/counterexamples in

ring theory.

• The rings R[x], Q[x], and Z[x]. The rings R[x] and Q[x] will have a lot in common with C[x],
but if k is not algebraically closed you will get different irreducible elements. The ring Z[x] is
closely connected to Q[x] (via Gauss’ lemma, see the next set of notes), but also has additional

interesting structure of its own.

• Rings of polynomials in more than one variable. For example, C[x, y] and C[x, y, z].

• Quotient rings of rings you already know. Some examples that come to mind are:

– If f ∈ Q[x] is an irreducible polynomial, the ring Q[x]/(f) is a field extension of Q. This

kind of example is very important in field theory.

– For k a field, the ring k[x]/(x2) is sometimes called “the ring of dual numbers”. In this

ring, the element x behaves like an infinitesimal in old-timey calculus, because x is not

zero, but x2 = 0.

– There are lots of interesting quotients of polynomial rings in many variables. For example,

C[x]/(x2+y2−1) is a ring that is associated to the equation x2+y2−1 = 0, or x2+y2 = 1

as a sane person might write it. So, this ring captures some information about the unit

circle. The ring C[x, y]/(xy) has come up a couple times on old quals. In a sense, the

field of algebraic geometry is concerned with studying the rings that arise as quotients

of multivariable polynomial rings.

• Other matrix rings such as M2(R) and M2(Z). Sometimes you might need to think about

matrices larger than 2 × 2, but there’s a meta-principle that “any behavior that can occur

for matrices, can occur for 2× 2 matrices”. This, of course, is not literally true, but it’s true

often enough to be a useful guide.
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• Given a group G, one can form the group ring C[G] (sometimes written CG). The elements

of the group ring are formal linear combinations
∑

cigi, where we treat the group elements as

linearly independent vectors over C. Addition is straightforward, and multiplication is defined

by using the multiplication in the group. (The complex numbers are not important here, one

can just as easily form R[G], Z[G], or R[G] for any ring R.) Group rings come up in the area

of representation theory, which is listed as a qual topic but usually only appears disguised

as something else, such as ring theory questions about a group ring.

Basics about commutative rings

Ideals in commutative rings

For now, all our rings will be commutative. An ideal in a commutative ring R is a subset I ⊂ R

with the following two properties:

(i) I is closed under addition, and

(ii) I is absorbing under multiplication; that is, for any r ∈ R and i ∈ I, ri ∈ I.

Later in this section I’ll give some historical examples that motivated creating ideals. For now, I’ll

note that given some elements g1, . . . , gn ∈ R, we can form an ideal generated by those elements,

denoted either ⟨g1, . . . , gn⟩ or just (g1, . . . , gn) when the parentheses will cause no confusion, which

is simply the subset of R consisting of elements of the form r1g1 + · · ·+ rngn. (This definition can

be extended to ideals generated by infinite sets, with the condition that you are only ever allowed

to take a finite sum of rigi. Our rings don’t have a notion of “convergent series” in them ... yet.)

If an ideal can be written as I = (g), then I is called principal.

A ring R is always an ideal of itself, often denoted (1) to distinguish when we’re thinkging about

R as a ring versus as an ideal of itself. This ideal is often called the unit ideal. There’s one more

ideal that every ring has: the ideal that consists just of the element 0, intuitively named the zero

ideal.

Euclidean domains, PIDs, and UFDs

Turning to our examples, notice that both Z and C[x] have a notion of “division with remainder”,

which you hopefully learned about sometime during your K-12 education. They are examples of

Euclidean domains: a ring R together with a function f : R \{0} → Z≥0 so that for any pair a, b,

we can find q, r so that a = bq+ r and either r = 0 or f(r) < f(b). In the case of Z, the function in

question is the usual absolute value, and in the case of C[x] the function takes a polynomial to its

degree. It might seem strange to single out the element 0 to not be given a value by this function.

The reason it is left out is that there are contexts in which you want the degree of 0 to be −∞ to

make some formula work, and there are instances in which you want the degree of 0 to be ∞ to

make some formula work. So, all in all, it’s best to not say anything about the degree of 0, and

single it out for special treatment.
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Let’s start working on understanding Z and C[x]. One extremely basic observation about these

rings is that if the product of two elements is 0, one of the two elements is 0. A ring R is an integral

domain, or simply a domain, if whenever ab = 0, either a = 0 or b = 0. An element z such that

there exists a non-zero element b satisfying zb = 0 is called a zero-divisor. So, another equivalent

thing to say is that in an integral domain, the only zero-divisor is 0. (Sometimes people define a

zero-divisor to be non-zero.)

Another rephrasing is that integral domains are the rings in which cancellation is valid: if

ab = ac, then either a = 0 or b = c. Notice that every Euclidean domain is also an integral domain.

Let’s start working on understanding the ideals of Z and C[x]. Define an element d ∈ R to be a

greatest common divisor (gcd) of two elements a and b if d | a, d | b, and for any other element

n that divides a and b, we also have that n | d. Notice that I said a gcd, not the gcd, because such

an element need not be unique: for example, if d is a gcd of a and b, then so is −d. More generally,

if u ∈ R is a unit (i.e. there exists v ∈ R so that uv = 1) then ud is also a gcd of a and b. Two

elements r, r′ in a ring R that differ only by multiplication by a unit r = ur′ are called associates.

Exercise 2. (gcds) Let R be a Euclidean domain.

(a) Suppose a = bq+ r, and suppose d is a gcd of a and b. Show that d is a gcd of b and r as well.

(b) Given two elements a, b ∈ R, we may perform division with remainder to write a = bq1 + r1
with either r1 = 0 or f(r1) < f(b). Then, we may do it again to b and r1: b = q2r1+ r2. Then

to r1 and r2. And so on, and so on. Prove that eventually this process reaches 0.

(c) Let rn be the last nonzero remainder found by the above process. Show that rn is a gcd of a

and b.

(d) The penultimate step of the process gives us an expression of the form rn−2 = qnrn−1+ rn, so

rearranging we get rn = rn−2 − qnrn−1. Do this all the way up the chain to show that there

exist x, y ∈ R so that rn = ax+ by.

(e) Perform the algorithm outlined above starting with the integers a = 13623 and b = 9215.

Calculate their gcd d, then back-substitute to find integers x and y so that d = 13623x+9215y.

Yes, I’m serious.

Greatest common divisors are related to thinking about factorizations. An element p ∈ R is

called irreducible if whenever a | p, we have that a is either a unit or an associate of p. Whenever

we can take gcds between elements, we can use gcds to factor a given element into irreducibles, like

we can factor integers in Z. An integral domain in which every element can be written as a product of

irreducible elements, and that product is unique up to multiplying the whole thing by a unit, and up

to replacing the irreducible elements in the product by associates, is called aUnique Factorization

Domain (UFD). (For example, in Z, we don’t consider 6 = 2 · 3 = (−2) · (−3) = −(2 · (−3)) to

really be different factorizations of 6.)
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Exercise 3. (EDs are PIDs) Prove that if R is a Euclidean domain, then every ideal in R is

principal. An integral domain in which every ideal is principal is called a principal ideal domain

(PID).

Exercise 4. (PIDs are UFDs, Part 1) Let R be a PID. This exercise, along with Exercise 6,

will prove that R is also a UFD.

(a) Prove that the ideal (p) ⊂ R is maximal if and only if p is irreducible.

(b) Prove that every element r ∈ R has an irreducible divisor. (Hint: every ideal is contained in

a maximal ideal.)

The idea is basically to use the proof of unique factorization that is familiar in Z, and adapt it

to a general PID. For Z, the outline of the proof is:

1. First, show that any positive integer has a positive prime factor.

2. Then, successively factor n = p1n1 = p1p2n2 = . . . . The sequence of integers n, n1, n2, . . . is

a decreasing sequence of positive integers, and since Z is well-ordered this sequence must end

after finitely many steps. By design, it can only end when nℓ = 1, at which point we will have

achieved some prime factorization of n.

3. Finally, show that any two putatively distinct factorizations of n actually have the same primes

to the same powers.

In the exercise above, we have already accomplished step 1 in a general PID. Step 3 is no harder for

a general PID than it is for Z. However, there is something difficult in step 2, because we cannot

assume that our PID is well-ordered like the positive integers are. We need some other way to

guarantee that this process cannot go on indefinitely, which is provided by the next exercise.

Exercise 5. Let R be a PID, and suppose we have an infinite chain of ideals

I1 ⊂ I2 ⊂ I3 ⊂ . . . .

(a) Prove that
⋃∞

j=1 Ij is an ideal of R.

(b) Prove that this sequence terminates, in the sense that there is some N so that Ij = IN for all

j ≥ N .

The property (b) above implies that a PID is Noetherian, which we will discuss further in the

next set of notes. This tool fills the gap we had.
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Exercise 6. (PIDs are UFDs, Part 2) This exercise continues Exercise 4. Let R be a PID.

(a) Prove that any r ∈ R has a (finite) factorization into irreducible elements.

(b) Suppose r = upe11 . . . pemm = vqf11 . . . qfnn , where u, v are units and pi, qj are irreducibles with the

pi distinct and the qj distinct. Prove that every pi is associate to some qj , and that ei = fj .

Conclude that also n = m. Thus, the factorization is unique in the manner desired, so R is a

UFD.

(Actually, it may not be worth your time to think too much about part (b). It’s a bit of a tedious

argument, and the conclusion is what’s important.)

This whole story about factorization is related to why ideals were originally created. People

were looking at rings of the form Z[α] where α ∈ C was the root of a monic polynomial with integer

coefficients. They hoped that arithmetic in these rings would work a lot like arithmetic in Z. Tragi-
cally, it does not. For example, in the ring Z[

√
−5], I can factorize 6 = 2 · 3 = (1 +

√
−5)(1−

√
−5).

All of the elements 2, 3, 1±
√
−5 are irreducible in this ring, but none of them are associate to one

another (the only units in this ring are ±1). Kummer observed that the problem here is that there

is no number that can serve as gcd(2, 1 +
√
−5) or gcd(3, 1 ±

√
−5). So, he introduced what he

called “ideal numbers”, which vaguely served to stand in for these missing gcds, and with them he

achieved the factorization 6 = (2, 1 +
√
−5)2(3, 1 +

√
−5)(3, 1 −

√
−5). Later, Dedekind solidified

Kummer’s idea by defining ideals as we do today, as subsets of a ring R.

So, one important takeaway is that an ideal I = (g1, . . . , gn) can be thought of as a “generalized

gcd” of the elements g1, . . . , gn.

Fun things to do with ideals

You can do several things to ideals to get new ideals:

• If I, J are ideals, then their intersection I ∩ J is an ideal. When R is a PID, (a) ∩ (b) =

(lcm(a, b)), and in general you should think of I ∩ J as being like the least common multiple

of I and J . Exercise 7. Prove that I ∩ J is an ideal.

• If I, J are ideals, then their sum I + J = {i + j : i ∈ I, j ∈ J} is an ideal. When R is a

PID, (a)+ (b) = (gcd(a, b)). The sum of two ideals I and J is the smallest ideal that contains

both I and J . Exercise 8. Prove that I +J is an ideal. Prove that for any ideal I ′ such that

I ′ ⊃ I and I ′ ⊃ J , I ′ ⊃ I + J .

• If I, J are ideals, then their product IJ = ⟨ij : i ∈ I, j ∈ J⟩ is an ideal. This ideal always

sits inside I ∩ J , and it can be strictly smaller. If R is a PID, (a)(b) = (ab), and the fact that

IJ can be strictly smaller than I ∩ J is similar to how the product of two numbers can be

larger than their lcm if they have common factors. Exercise 9. Notice that in the definition

of IJ I put angle brackets rather than curly brackets, because in general {ij : i ∈ I, j ∈ J}

6



Algebra SEP Notes Summer ’24

is not an ideal. Let R = C[x, y], I = J = (x, y). Show that there are elements in IJ that are

not expressible as just a product of the form ij, i ∈ I, j ∈ J .

Exercise 10. Let R = C[x, y, z], and define the ideals I = (x3, x2z) and J = (x4, x2y2).

(a) Find a generating set for I + J .

(b) Find a generating set for IJ .

(c) Find a generating set for I ∩ J .

(d) Verify that I ∩ J ⊋ IJ by demonstrating a polynomial in I ∩ J that is not in IJ .

Since ideals are like numbers, we have an analog of prime numbers. An ideal P is prime if it

is proper (not all of R), and whenever ab ∈ P , either a ∈ P or b ∈ P . This gives us one more way

to rephrase what it means to be an integral domain: a ring is an integral domain if the ideal (0) is

prime. One more kind of ideal that is very important, but which doesn’t have a direct analog for

numbers are maximal ideals. A proper ideal is maximal if it is not contained in any other proper

ideal.

The following fact is good to know, but unenlightening to prove. (It is just an exercise in using

Zorn’s lemma.)

Fact. Given a ring R and an ideal I ⊂ R, there exists a maximal ideal m ⊃ I.

Given an ideal I, we can form the quotient ring R/I. The elements of the quotient ring are

additive cosets r+I = {r+i : i ∈ I}, and the ring operations are more or less clear: (r1+I)+(r2+I) =

(r1 + r2) + I, (r1 + I)(r2 + I) = r1r2 + I. As usual, you can shortcut this in your mind as just

setting all the elements of the ideal equal to zero, and working “modulo I”. Notice that unlike with

groups, we don’t quotient rings by subrings, but rather by ideals, which have a somewhat different

flavor.

Exercise 11.

(a) Prove that C[x]/(x− 3) ∼= C.

(b) Prove that C[x, y, z]/(x− 3, y + 1, z − 2) ∼= C.

(c) Prove that C[x]/(x2 + x+ 1) is a 2-dimensional C-vector space.

Exercise 12. Let ϕ : R → R′ be a ring homomorphism. Show that kerϕ is an ideal of R.

Exercise 13.

(a) Prove that a maximal ideal is prime.

(b) Let I be an ideal of R. Prove that I is prime if and only if R/I is an integral domain.

(c) Let I be an ideal of R. Prove that I is maximal if and only if R/I is a field.
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(d) Let ϕ : R → R′ be a ring homomorphism, and let I ⊂ R′ be an ideal. Prove that ϕ91(I) is an

ideal of R. (How does this relate to Exercise 12 above?)

(e) Let ϕ : R → R′ be a ring homomorphism, and let P ⊂ R′ be a prime ideal. Prove that ϕ91(P )

is a prime ideal of R.

Exercise 14. Suppose R is a ring with exactly two ideals. Prove that R is a field.

Exercise 15.

(a) Prove that the maximal ideals of Z are the ideals (p) where p is a prime number. What are

the prime ideals of Z? (The answer is different!)

(b) What are the prime and maximal ideals in C[x]?

(c) Consider the ring R[x]. Like C[x], this ring is also a Euclidean domain, hence a PID and a

UFD as well. However, its prime ideals are different from C[x]. Describe the prime ideals of

R[x].

(d) The rings Z[x] and C[x, y] are both UFDs, but not PIDs. Choose one, and prove that it is

not a PID by finding an ideal which is not principal, and proving that it is such an example.

The next exercise introduces two kinds of ideals which I won’t discuss much further in these

notes, but which are good to know in general: primary ideals and the radical of an ideal. Primary

ideals don’t tend to feature on the qual, and when they do they are defined. There has been a qual

question asking you to know the definition of the radical before.

Exercise 16. (August 2019 Problem 2) This problem involves ideals in a commutative ring

(with unit). A proper ideal I is primary if whenever ab ∈ I and a /∈ I, then bn ∈ I for some

n > 0. The radical of an ideal I, denoted
√
I, is the set

√
I = {f : fn ∈ I for some n > 0}.

(a) Prove that if I is primary, then
√
I is prime.

(b) Is the ideal J = (x2, xy) ⊂ Q[x, y] primary? Be sure to carefully justify your answer.

Exercise 17. Let I = (r) be an ideal in a PID R.

(a) Prove that
√
I is generated by the largest squarefree factor of r.

(b) (August 2022 Problem 1 (b)) What is the radical of the ideal (x3 − x2) in R[x]?
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The Isomorphism Theorems

In this section I’ll recap the three basic isomorphism theorems in the context of commutative rings.

There will be a similar section in the notes on modules and groups, for the correct statements

in those contexts. (The statements below hold for non-commutative rings with every instance of

“ideal” replaced by “two-sided ideal”.)

I won’t dwell long here, but I want to draw some attention to the following Motto: the

Isomorphism Theorems for a given algebraic object are analogs of the Rank-Nullity

Theorem for vector spaces. Vector spaces are very simple objects, there is really only one

invariant a vector space has, its dimension, and any two vector spaces of the same dimension are

isomorphic. The reason nobody ever talks about the isomorphism theorems for vector spaces is

that often distinctions that hold when speaking of e.g. groups, rings, or modules will collapse down

to statements about dimensions of vector spaces adding to the correct number. The isomorphism

theorems below capture facts that are true for vector spaces, and indeed follow from the Rank-

Nullity Theorem, but require greater nuance in other contexts

This highlights a strategy, which is perhaps not always helpful on the qual, but is often helpful

when doing math. A very general way of thinking about algebra when you are stuck is to see if

you can imagine what an algebraic statement would say if everything was a vector space. This

doesn’t always work, but it can be enlightening, and sometimes the isomorphism theorems will let

you directly apply your reasoning from one domain to the other. In the notes about modules, we

will see that Nakayama’s lemma is another theorem that allows one to transfer information about

vector spaces back to rings/modules.

Theorem (first isomorphism theorem). Let ϕ : R → S be a ring homomorphism. Then kerϕ is an

ideal of R (see Exercise 12), imϕ is a subring of S, and the induced homomorphism R/ kerϕ → imϕ

is an isomorphism. In particular, if ϕ is surjective, then S ∼= R/ kerϕ.

Theorem (second isomorphism theorem). Let R be a ring, S ⊂ R a subring, and I ⊂ R an ideal.

Then S + I = {s + i : s ∈ S, i ∈ I} is a subring of R, I is an ideal of S + I, (S + I)/I is a

subring of R/I, S ∩ I is an ideal of S, and the composition S ↪→ R ↠ R/I induces an isomorphism

S/(S ∩ I) ∼→ (S + I)/I.

Theorem (third isomorphism theorem). Let R be a ring and I an ideal. Then if A is a subring

of R such that I ⊂ A ⊂ R , then A/I is a subring of R/I (we have already used this in the

previous isomorphism theorem). Furthermore, if J is an ideal of R such that I ⊂ J ⊂ R, then

J/I is an ideal of R/I, and the composition R ↠ R/I ↠ (R/I)/(J/I) induces an isomorphism

R/J ∼→ (R/I)/(J/I).

Some ideal theory in noncommutative rings

For noncommutative rings like M2(C), we can also define ideals, but now there’s a little rub: an

ideal can have the absorbing property under left multiplication, under right multiplication, or under
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both. These are called, respectively, left ideals, right ideals, and two-sided ideals. You can prove

the analog of Exercise 12 by proving that the kernel of a homomorphism R → R′ is a two-sided

ideal of R.

The following exercise is here to give you some practice working with ideals in the most basic

noncommutative rings.

Exercise 18. (ideals in matrix rings)

(a) (August 2020 Problem 1 (c), August 2019 1 (a) Let R = M2(C). Give an example of

a left ideal that is not a right ideal. (In 2019, it was R = M2(Z), but same dif.)

(b) (August 2022 Problem 1 (e)) How many two-sided ideals are there inM2(C)? (The answer

is going to be a small number.)

(c) (January 2021 Problem 1 (b), August 2019 Problem 1 (b)) Let R = M2(Z). Give an

example of a proper, non-zero, two-sided ideal.

Something that comes up for noncommutative rings that doesn’t come up for commutative rings

are simple rings. A simple ring is a ring with no proper, non-zero ideals. So, (spoilers) above you

should have shown that M2(C) is simple. A commutative ring is simple if and only if it is a field,

but for noncommutative rings there can be many examples of interesting simple rings.

Exercise 19. (January 2020 Problem 1 (a) and (b)) On this problem, no justification is re-

quired; only the answer will be graded. Let S3 be the symmetric group on 3 letters, and let R be

the group ring Z[S3].

(a) Write down a nonzero element of R which is a zero-divisor.

(b) Write down an element in the center of R which is not in Z.

A few caveats about ideals in noncommutative rings

In noncommutative rings, the definition of a prime ideal is somewhat modified: a proper two-sided

ideal P is prime if whenever the product AB ⊂ P for ideals A,B, we in fact have either A ⊂ P or

B ⊂ P . Equivalently, P is prime if whenever the product of principle (two-sided) ideals (a)(b) ⊂ P ,

then either a ∈ P or b ∈ P .

Exercise 20.

(a) Prove that in a commutative ring, the two conditions in the preceding paragraph are equivalent

to the usual definition of a prime ideal.

(b) Prove that in M2(C), the zero ideal is prime using the above definition, but is not prime

using the definition for commutative rings. (Ideals in a noncommutative ring which satisfy

the commutative definition of “prime” are sometimes called completely prime ideals.)
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Quotient rings can only be constructed when I is a two-sided ideal. If I is one-sided, you can

still construct R/I as an abelian group, but you won’t be able to make the multiplication work.

However, you should keep these kinds of quotients in mind, because later they will be important

ways to construct modules over noncommutative rings.
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