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Module Theory 1
Examples and basic properties, modules over PIDs

by Ivan Aidun

These are notes interspersed with exercises. The purpose of these notes is to be more fleshed out

than Evan Dummit’s old notes, but shorter and more focused than a textbook treatment. Halfway

between Dummit and Dummit and Foote, so to speak. I hope these are helpful to you!

First examples and basic properties

A module is what you get if you take the definition of a vector space and replace every instance

of the word “field” with the word “ring”. A homomorphism of R-modules is an R-linear map:

f(x+ y) = f(x) + f(y), f(rx) = rf(x). If the ring is not commutative, one has to specify whether

the scalar multiplication is on the right or the left. I’m going to focus most of my attention on

commutative rings, and write multiplication on the left, but most of what I say will either apply

verbatim to noncommutative rings or require only minor adjustments. Just keep in mind that over

noncommutative rings, the difference between a left and a right module can be substantive.

Examples

We will begin with modules over our three big examples.

Example 1.

• A Z-module is just an abelian group. Think of your favorite abelian group, that’s a Z-module

baby.

• How can we describe a C[x]-module? The elements of C[x] can be built out of constants from

C and the element x, along with addition and multiplication. So, to define a C[x]-module

M , we need to say how to multiply by constants from C, and also how to multiply by the

element x. Saying we need to multiply by constants from C is the same as saying that M

must be a C-vector space (we will generalize this below to any situation involving a subring).

Exercise 1. Check from the module axioms that the “multiplication by x” map x· : M → M

must be a linear operator on M as a complex vector space.

On the other hand, given any complex vector space V and any linear operator T : V → V ,

we can make V into a C[x]-module by declaring that for every vector v ∈ V , x · v = T (v).

Thus, the data of a C[x]-module is exactly the same as the data of a pair (V, T ) of a complex

vector space and a linear operator. (Note that one and the same V can have non-isomorphic

realizations as a C[x]-module if we choose different linear operators T .)

• What do the (left) modules of M2(C) look like? There is one M2(C)-module that is hopefully

easy to think of: the vector space C2 where M2(C) acts by left multiplication. Here’s another

one: take the vector space C4, but write each element as a pair of vectors (v1, v2) ∈ C2 × C2.
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This is an M2(C)-module where M(v1, v2) = (Mv1,Mv2). In a similar fashion we could make

(C2)n into an M2(C)-module, but all of these modules seem ... idk a little plain? Are there

any spicier M2(C)-modules? Actually, the answer is no, these are the only (finitely generated)

M2(C)-modules. We will prove this later, this is related to the fact that M2(C) is a simple

ring, as discussed in the Ring Theory I notes.

Below, in the section Finitely-generated modules over a PID, we will give another way to look at

Z-modules and C[x]-modules. In particular, viewing a C[x]-module as a pair (V, T ), we will obtain

some nice applications of module theory to linear algebra.

Exercise 2.

(a) How can you describe a C[x]-submodule of a given C[x]-module (V, T )?

(b) How can you describe a C[x]-module homomorphism from (U, S) to (V, T )?

Example 2. Let us turn now to modules over an arbitrary ring R. Here are some ways to find

some R-modules.

• Given any ring R, R is a module over itself. Moreover, the Cartesian product Rn is a module

over R, e.g. Z2 is a Z-module, and C[x]2 is a C[x]-module.

• Given a ring R, an ideal I ⊂ R is an R-module. In fact, the definition of an ideal is the same

as “R-submodule of R”. For example, 2Z is a Z-module, and the ideal (x, y) ⊂ C[x, y] is a

C[x, y]-module.

• Given a ring R and an ideal I ⊂ R, the quotient R/I is an R-module, e.g. Z/6Z or C[x]/(x2+
x+ 1).

• Given a commutative ring R, any ring of polynomials in one or more variables R[x], R[x, y], . . .

is an R-module.

• Given a commutative ring R, one can also form the ring of noncommutative polynomials

in n variables over R, denotes R⟨x1, . . . , xn⟩. These are polynomials where the variables

don’t commute with one another. In one variable, this makes no difference, but in 2 or more

variables you can have expressions like xy − yx, which is nonzero in R⟨x, y⟩. I mention this

because every now and then a ring of this flavor shows up on the qual.

Exercise 3. Let f be a polynomial of degree d. The C[x]-module C[x]/(f) is also a complex vector

space. What is its dimension?

Example 3. We have ways to make new modules out of old.

• Given any two R-modules M,N , we can form their direct sum M ⊕N . The underlying set

of M ⊕ N is the Cartesian product M × N , and scalar multiplication works as you might

expect: r(m,n) = (rm, rn). So, above, Rn = R⊕ · · · ⊕R︸ ︷︷ ︸
n times

. This gives us other examples, such

as Z⊕ Z/6Z.
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• Given an R-module M and a submodule N ⊂ M , the quotient group M/N is an R-module.

This generalizes our observation above that R/I is an R-module.

Exercise 4. Given R-modules M,N , let HomR(M,N) be the set of all R-module homomorphisms

f : M → N .

(a) Prove that HomR(M,N) is itself an R-module.

(b) What are the isomorphism classes of the following Z-modules?

(i) HomZ(Z,Z)
(ii) HomZ(Z,Z/6Z)
(iii) HomZ(Z/6Z,Z)
(iv) HomZ(Z/5Z⊕ Z/5Z,Z/25Z)

(c) For any ring R and any R-module M , there is an isomorphism HomR(R,M) ∼= M that doesn’t

require me to tell you anything else about the ring R or the module M . Can you find it?

Exercise 5.

(a) Consider HomR(M,M). Show that under pointwise addition and function composition,

HomR(M,M) is a ring. This ring, which is often not commutative, is called the ring of

endomorphisms of M , EndR(M).

(b) Prove that for r ∈ R, the “multiplication by r” map ϕr : M
r·−→ M is an endomorphism of M .

(c) Prove that the function R → EndR(M) sending r ∈ R to ϕr ∈ End(M) is a ring homomor-

phism.

(d) In the case V is a finite-dimensional k-vector space, what is Endk(V )? What is the image of

the ring homomorphism k → Endk(V )?

Example 4. We can make modules for some rings out of modules for others.

• If R′ ⊂ R is a subring, and M is an R-module, then M is moreover an R′-module. For

example, we said above that any C[x]-module is moreover a C-vector space. Another example

is we can view any C-vector space as an R-vector space of twice the dimension, or view any

Q-vector space as a Z-module (abelian group). Often, this way of forming modules is referred

to as restriction of scalars. (At the end of the linear algebra notes I mentioned extension

of scalars. As the example of C- versus R-vector spaces illustrates, restriction of scalars does

not quite undo extension of scalars, but it does something pretty close, which I may or may

not mention later.)

• More generally, if f : R′ → R is any ring homomorphism, and M is an R-module, then we can

view M as an R′-module via r′ ·m := f(r′)m. In particular, R itself becomes an R′-module

in this way.
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Generating sets, bases, and torsion

Let’s compare some behavior of modules to their analogs in vector spaces. The analog of a finite-

dimensional vector space would be a finitely-generated module. A module M over a ring R is

finitely-generated (abbreviated to f.g.) if there is some finite set of elements m1, . . . ,mn ∈ M so

that for any other m ∈ M we can find ring elements r1, . . . , rn such that m = r1m1 + · · · + rnmn.

The set {m1, . . . ,mn} is said to span or generate M .

Exercise 6. In these notes we will primarily occupy ourselves with finitely-generated modules, but

don’t go thinking you can avoid infinitely-generated modules! Prove that the polynomial ring R[x]

is infinitely-generated as an R-module.

We can define a basis for a f.g. module M over a ring R in much the same way we do for

vector spaces. A collection m1, . . . ,mn ∈ M is said to be linearly independent if whenever

r1m1 + · · ·+ rnmn = 0, we must have that the ri are all 0. A basis for the module M is a linearly

independent spanning set.

(There are similar definitions for spanning/generating sets and linear independence in infinitely

generated modules, I just don’t care about writing them down.)

A basis for a module is a much more special thing than for a vector space. Two special properties

that vector spaces have is that if V is a (say d-dimensional) vector space, any maximal set of linearly

independent vectors is a basis, and any minimal set of spanning vectors is a basis. Neither of these

is true for modules. Consider Z as a module over itself. This module does have a basis, namely the

set {1} (or the set {91}). However, the set {2} is a set of linearly independent elements of Z, and no

element of Z can be added while maintaining linear independence, but nevertheless this set is not a

basis. Similarly, the set {2, 3} spans Z, and removing either element makes it not span Z, but it is
not a basis. (Note that 2 and 3 are not linearly independent of each other because 3 · 2− 2 · 3 = 0.

In a module, saying two elements are linearly dependent is not the same as saying one is a multiple

of the other, because we may not be able to divide in the ring R.)

But modules are not just vector spaces where you have to be careful not to divide, there is

genuinely new behavior possible in modules that is not possible in vector spaces. We observed

above that Z/6Z is a Z-module, and in Z/6Z the (class of the) element [2] is not the 0 element of

the module, but after scaling by the nonzero element 3 ∈ Z it becomes 0. Nothing of the sort can

happen in a vector space.

The two behaviors we have seen already are important enough to the study of modules that

they get their own names:

• A module with a basis is called a free module. For any ring R, Rn is a free module over R,

with basis ei = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the ith place. For any free module F ,

choosing a basis gives an isomorphism F ∼= Rn by sending the chosen basis to the ei.

• For a module M over an integral domain R, an element m ∈ M is torsion if there exists

some nonzero r ∈ R so that rm = 0. (There is much vocabulary related to the idea of

rm being a way of “twisting” the element m.) A module M is called torsion if all of its

elements are torsion. Any module M has a submodule T (M) consisting of all of its torsion
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elements, reasonably enough called the “torsion submodule”. A module is torsion-free if its

only torsion element is 0. (Like with zero-divisors, sometimes people will exclude 0 ∈ M from

being torsion, mostly depending on whether it makes a given statement simpler or not.)

Comment. Some authors don’t define torsion over rings with zero-divisors, but you can do so if you

want. All that changes is you replace “exists some nonzero r ∈ R” with “exists some non-zero-

divisor r ∈ R”. This is a somewhat subtle thing, for example, inside Z/6Z we have the ideal 3Z/6Z.
You might think this is a torsion Z/6Z-module, because 3 ∈ 3Z/6Z satisfies 2 · 3 = 0. However, the

above definition tells us this module is torsion-free, because 2 ∈ Z/6Z is a zero-divisor!

This subtlety will not come up in the rest of the notes, and I haven’t seen it come up on the

qual, because they are careful to ask about torsion only over integral domains.

Exercise 7. Let M be a module over an integral domain R, and suppose M has a nontrivial torsion

submodule, T (M) ̸= {0}. Prove that M has no basis.

Exercise 8. Let R be an integral domain. Prove that an ideal I ⊂ R is a free module iff it is

principal.

Exercise 9.

(a) Suppose (V, T ) is a C[x]-module, and V is finite-dimensional. Prove that V is finitely-generated

as a C[x]-module.

(b) Under the same assumptions, prove that (V, T ) is torsion.

Exercise 10.

(a) Let M be a f.g. torsion module over an integral domain R. Prove that there is some nonzero

r ∈ R so that rM = 0.

(b) Give an example of a module M over Z or over C[x] which is torsion, but for which no nonzero

r satisfies rM = 0.

Exercise 11. Let M be a torsion-free module. Prove that any submodule of M is also torsion-free.

A very important perspective on modules is that we can view any f.g. module as a quotient of a

free module. (Again, this is also true for infinitely-generated modules.) If m1, . . . ,mn generate M ,

then there is an R-linear surjection Rn g−→ M which sends ei to mi. (Notice the similarity to the

map you found in Exercise 4 (c).) Then the first isomorphism theorem tells us that M ∼= Rn/ ker g.

Because of this, knowing properties of M is tied up with knowing properties of ker g.

Finitely-generated modules over a PID

The nicest case of modules are f.g. modules over PIDs. The main attraction here is the following

classification theorem.
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Theorem. Let R be a PID, and let M be a f.g. R-module. Then

M ∼= Rm ⊕R/(a1)⊕R/(a2)⊕ · · · ⊕R/(an)

for some integers m,n and non-unit ring elements a1, . . . , an satisfying the divisibility relations

a1 | a2 | · · · | an. The elements ai are called the invariant factors of M , and they are unique up

to units.

Alternatively, using the Chinese Remainder Theorem, we can rewrite

M ∼= Rm ⊕R/(pe11 )⊕R/(pe22 )⊕ · · · ⊕R/(penn )

Where the pi are all (not necessarily distinct) irreducible elements of R. The set of elements peii
that appears are called the elementary divisors of M , and again they are unique up to units.

Either one of the above forms can be called the canonical form of M , or sometimes informally

will just be called its isomorphism class. (Maybe somebody might call it the “normal form” of

M? I’ve never seen it, but it might happen.)

We will eventually prove parts of this theorem, but probably not all of it unless I let these notes

really get away from me. What I want to focus on is a few immediate consequences, and then some

applications to linear algebra.

Facts.

• Taking R = Z, the classification theorem specializes to the classification of finitely-generated

abelian groups.

• If M is a f.g. torsion-free module over a PID, then in fact M must be a free module. We will

see this is not true for modules over non-PIDs.

• The power m appearing in the Rm term in the canonical form of M is often called the rank

of M , even tho M is not itself free. (There is a slightly more general context in which people

will talk about the rank of a non-free module, which I will mention in future notes.) For

example, in number theory there are things called “elliptic curves”, which have the structure

of a finitely-generated abelian group. Thus, the group is isomorphic to some finite torsion

module plus some number of copies of Z. The torsion is understood relatively well, but people

still work very hard to understand the ranks of elliptic curves.

Applications to linear algebra

Recovering Jordan Normal Form: As we said earlier, a C[x]-module is the same thing as a

complex vector space V along with a chosen linear operator T : V → V . In linear algebra, we often

find ourselves in the position of starting with a vector space and some linear operator, and trying

to deduce properties of the operator, so it seems natural that we could use the canonical form to

get the information we’re after.
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So, suppose V is finite-dimensional. In Exercise 9 you showed that V is a f.g. torsion module,

so the classification theorem tells us that we can break V up in terms of its elementary divisors:

(V, T ) ∼= C[x]/(fe1
1 )⊕ C[x]/(fe2

2 )⊕ · · · ⊕ C[x]/(fem
m ),

with each fi an irreducible polynomial. Here the linear transformation on the right is implicitly

“multiplication by x”. For now, let’s consider the case when n = 1, so that V ∼= C[x]/(fe) for some

irreducible polynomial f . Luckily, over C, we know that f = (x−λ) for some (suggestively named)

real number λ ∈ C.
Exercise 12.

(a) Prove that B = {(x − λ)e−1, (x − λ)e−2, . . . , 1} is a vector space basis for C[x]/(fe). (This

space does not have a basis as a C[x]-module, because no torsion module is free by Exercise 7.)

(b) As mentioned, “multiplication by x” is a C-linear operator x· : C[x]/(fe) → C[x]/(fe). In the

case e = 3, write x · (x− λ)i in terms of the basis B for i = 2, 1, 0.

(c) In the case e = 3, what is the matrix of x· with respect to the basis B?

The above exercise extends to the case with more than one factor C[x]/(fei
i ), and completely

recovers the Jordan Normal Form!

Rational Canonical Form: We also get information by looking at the invariant factors of the

decomposition. If we write

(V, T ) ∼= C[x]/(g1)⊕ · · · ⊕ C[x]/(gn)

where g1 | g2 | · · · | gn, then we can see that gn is the minimal polynomial of T . As we saw

in the ring theory notes, there is not much special about C[x] as far as polynomial rings go, any

polynomial ring over a field k is a PID. For the same reasons that a C[x]-module is a C-vector space
with a linear operator, a k[x]-module is a k-vector space with a linear operator, and we can get an

analogous decomposition of a k[x]-module (V, T )

(V, T ) ∼= k[x]/(g1)⊕ k[x]/(g2)⊕ · · · ⊕ k[x]/(gn).

Similar to the discussion above of how choosing a certain basis can give the Jordan Normal Form

of the operator T , choosing a certain basis here gives us a new matrix form.

Exercise 13. Let g be a polynomial of degree d, and let B = {1, x, x2, . . . , xd−1} be chosen as a

k-vector space basis for k[x]/(g). Denote the “multiplication by x” map as usual by x· : k[x]/(g) →
k[x]/(g).

(a) Suppose g = x3 + ax2 + bx + c, where a, b, c ∈ k. Write x · xi in terms of the basis B for

i = 0, 1, 2.

(b) In the same case as part (a), what is the matrix of x· with respect to the basis B?
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(c) In general, if g = xd +
∑d−1

i=0 aix
i is monic, what will the matrix of x· look like with respect

to the basis B?

The matrix form obtained above is called a companion matrix to the monic polynomial g.

Using the decomposition coming from the classification theorem, we obtain that any linear operator

T has some basis under which:

1. the matrix of T is a block diagonal matrix where

2. the blocks are the companion matrices associated to the invariant factors gi.

This matrix form is called the rational canonical form (RCF) or Frobenius normal form. (I

have never heard someone say the latter, but it’s what Wikipedia calls it.)

The RCF is not my favorite matrix normal form, but it is beloved by Matrix Master Josh

Mundinger. Here are some reasons you might like the RCF.

1. The RCF is defined over any field, not just over algebraically closed fields.

2. The RCF doesn’t change if you change your field of definition from a smaller field to a larger

one. So, for example the RCF of some n × n matrix with entries in R doesn’t depend on

whether you view that matrix as a linear operator Rn → Rn or as an operator Cn → Cn. This

is because the invariant factors will not change as you change your field, that’s what makes

them invariant.

3. As a corollary to the above, the existence of RCF implies that two matrices are similar over

R iff they are similar over C (and also the statement for any other field extension). At the

very least, this is evidence of the power of module theory, because as we saw, this statement

is not particularly easy to prove with linear algebra techniques alone.

I think Dummit and Foote give some completely contorted algorithm that ostensibly computes

the RCF of any given matrix, but it seems useless as a matter of practice. My impression is that the

RCF is sort of like Cramer’s rule, where it’s good to know about because it provides quick proofs

of certain statements, but you would never employ it for any practical computation.

Cyclic modules and cyclic subspaces: Our construction of the RCF involved the fact that

k[x]/(g) is generated as a k[x]-module by the element 1 ∈ k[x]/(g), which we used in the form that

1, x · 1, x2 · 1, . . . , xd−1 · 1 form a k-basis for k[x]/(g). In the case that (V, T ) ∼= k[x]/(g), there must

be some vector v ∈ V that corresponds to the element 1 ∈ k[x]/(g), and this vector v has the two

equivalent properties:

• v generates (V, T ) as a k[x]-module.

• The set {v, Tv, T 2v, . . . , T d−1v} forms a basis for V .
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A module (over any ring R) is called cyclic if it is generated by a single element as an R-module.

So, a cyclic group is just the same thing as a cyclic Z-module. A cyclic k[x]-module is what we

described above: a pair (V, T ) so that there exists some vector v with the property that {v, Tv, . . .}
span V . Given a k-vector space V and a linear operator T , a vector with this property is called a

cyclic vector for T . A subspace W ⊂ V is called a cyclic subspace for T if (W,T |W ) is a cyclic

submodule of (V, T ). That is to say, (1) W is T -stable, in the sense that for all w ∈ W , Tw ∈ W ,

and (2) restricting T to W turns W into a cyclic k[x]-module.

Exercise 14. Let V = C2.

(a) Give an example of a linear operator T so that the C[x]-module (V, T ) is cyclic.

(b) Give an example of a T so that (V, T ) is not cyclic.

Exercise 15. Let (V, T ) be a C[x]-module, and suppose v ∈ V is a cyclic vector.

(a) Prove that if f(T )v = 0 for some polynomial f ∈ C[x], then f(T )u = 0 for all u ∈ V . (This

can be done quickly with the classification theorem, but also can be done with pure linear

algebra.)

(b) Conclude that if f(T )v = 0, then f is a multiple of the minimal polynomial of T .

In this new vocabulary, we can rephrase what the classification theorem/RCF are telling us

in purely linear algebra terms. The classification theorem says that given any linear operator

T : V → V , we can write V as the direct sum of its T -cyclic subspaces. RCF says that on each

cyclic subspace, choosing a cyclic vector makes the matrix of T into a companion matrix.

Here is one of the hardest qual problems in recent memory:

August 2022 Problem 5, edited Let V be a vector space over C of dimension n ≥ 2. Let

A : V → V

denote a C-linear map with n mutually distinct eigenvalues. Prove that V contains one-dimensional

subspaces V1, . . . , Vn such that

(i) we have

V =

n∑
i=1

Vi

and if i ̸= j, Vi ∩ Vj = {0} (NB these two conditions are equivalent in this case);

(ii) AVi ⊆ Vi + Vi+1 for 1 ≤ i ≤ n− 1 and AVn ⊆ Vn + V1; and

(iii) Vi is not an eigenspace of A for 1 ≤ i ≤ n.
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Exercise 16 goes through some basic rephrasing of the problem, and Exercise 17 walks you

through a clever proof that Josh Mundinger told me. (This is not the only way to solve the

problem, nor indeed the solution I came up with.)

Exercise 16.

(a) Convince yourself that the conditions in the problem are equivalent to saying: V has a basis

v1, . . . , vn such that

(i) Avi = aiivi + ai+1,ivi+1 for 1 ≤ i ≤ n − 1 and Avn = annvn + a1nv1, for some set of 2n

scalars aij .

(ii) The scalars ai+1,i ̸= 0 for 1 ≤ i ≤ n− 1, and a1n ̸= 0.

(b) Convince yourself that if you had such a basis, you could easily get a basis so that ai+1,i = 1

for 1 ≤ i ≤ n− 1. (So, really, there are only n+ 1 scalars that we need to worry about.)

(c) Suppose V = C4, and suppose you already had found a basis v1, . . . , v4 as above. What would

the matrix of A look like with respect to this basis.

Exercise 17.

(a) Suppose you had a basis of the form given in Exercise 16(b). Prove that v1 would be a cyclic

vector for A.

(b) Prove that the assumptions on A imply that the minimal polynomial of A equals the charac-

teristic polynomial of A.

(c) Prove that A has a cyclic vector.

(d) Suppose for now that we have fixed the scalars a11, . . . , ann arbitrarily. Starting from a cyclic

vector v1, find vectors v2, . . . , vn so that Avi = aiivi + vi+1 for 1 ≤ i ≤ n− 1.

(e) For the vectors you constructed above, write Avn in terms only of A, v1, and the scalars

a11, . . . , ann.

(f) How should the scalars a11, . . . , ann be chosen so in order to ensure that Avn = annvn+ a1nv1
for some scalar a1n?

(g) What makes this problem difficult? And conversely, what clues could have led you to thinking

of a solution like this? (Those clues must exist, because Josh followed them.)
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