
Algebra SEP Notes Summer ’24

Module Theory 3
Localizing modules, tensor products, projective and flat modules, a bit about algebras

by Ivan Aidun

These are notes interspersed with exercises. The purpose of these notes is to be more fleshed out

than Evan Dummit’s old notes, but shorter and more focused than a textbook treatment. Halfway

between Dummit and Dummit and Foote, so to speak. I hope these are helpful to you!

A long-awaited theorem on M2(C)-modules

Way back in Module Theory 1, I claimed that every f.g. left M2(C)-module was of the form (C2)n

for some n, where the action of a matrix M was “coordinate-wise” on the n different 2× 1 vectors.

I meant to include a section about that in Module Theory 1, but then those notes got too long,

then I forgot while working on Module Theory 2, so it is going here now.

Exercise 1. Write V = C2, considered as a left M2(C)-module via matrix-vector multiplication.

Recall that previously you proved that V was a simple module, and that V is the only simple left

M2(C)-module up to isomorphism.

(a) Let M be any left M2(C)-module. Prove that the image of any homomorphism V → M must

either be 0 or a submodule of M isomorphic to V .

(b) Prove that if N1, N2 ⊂ M are any two distinct submodules of M isomorphic to V , then either

N1 = N2 or N1 ∩N2 = {0}.

(c) Prove that M2(C) ∼= V ⊕ V as a left module over itself.

(d) Conclude that any free left module M2(C)⊕k is isomorphic to V ⊕2k. (Here, A⊕n means the

direct sum of n copies of A. I apologize that the notation is weird and somewhat awkward, it

is standard in order to distinguish between taking direct sums and tensor powers.)

(e) Let M be any finitely-generated M2(C)-module. Prove that M is the internal direct sum of

finitely many submodules isomorphic to V .

Localizing modules

Just as we can localize rings, we can also localize modules. Starting with a ring R, an R-module

M , and a multiplicatively closed subset S ⊂ R, we can form S91M , which will be an S91R-module.

The process of doing so is pretty much the same as for forming the ring S91R in the first place:

• The elements of S91M are symbols of the form m
s , where m ∈ M and s ∈ S.

• Two symbols m1
s1

, m2
s2

are equal if their cross difference is S-torsion, that is, if there exists s ∈ S

so that s(s2m1 − s1m2) = 0.
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• The addition in S91M is defined by taking common denominators

m1

s1
+

m2

s2
=

s2m1 + s1m2

s1s2
.

• The S91R-module multiplication is probably what you expect: r
s1

· m
s2

= rm
s1s2

.

Just like with rings, if S is the compliment of a prime ideal p, then the Rp-module S91M is

usually written as Mp. I am not sure that I’ve ever seen special notation for a module over a

localization of the form Rf = R[ 1f ].

Exercise 2. Consider the Z-module Z/12Z.

(a) Let S be the set of powers of 2, so S91Z = Z[12 ]. What is the isomorphism class of the

Z[12 ]-module S91Z/12Z? (Hint: look back at Ring Theory 2, Exercise 10.)

(b) Now let S be the set of powers of 3. What is the isomorphism class of the Z[13 ]-module

S91Z/12Z?

(c) Show that if S contains no powers of 2 or 3, then S91Z/12Z ∼= Z/12Z.

The module S91M is also an R-module, because we have the localization homomorphism R → S91R

(see Module Theory 1, Example 4). However, being an S91R module is a more special property.

Exercise 3. Prove that an S91R-module is the same thing as an R-module M such that for every

s ∈ S, the “multiplication by s” map s· : M → M is an isomorphism.

The localization homomorphism and universal property

As with localizing rings, we get a homomorphism ℓ : M → S91M , also called the “localization

homomorphism”, by sending m 7→ m
1 . The homomorphism ℓ is a homomorphism of R-modules, so

ℓ(rm) = rℓ(m) for all r ∈ R.

Exercise 4. This exercise generalizes the statement that the localization homomorphism R → S91R

is injective iff S contains no zero-divisors.

(a) Let M be an R-module. Take some m ∈ M , and let a = Ann(m). Prove that ℓ(m) = 0 in

S91M if and only if S ∩ a ̸= ∅.

(b) Prove that ℓ is injective if and only if M has no s-torsion for any s ∈ S.

(c) Prove that S91M has no s-torsion for any s ∈ S.

(d) Explain your answers to Exercise 2.

It is common to hear people paraphrase this by saying that localization kills torsion.

The localization homomorphism has a pretty similar universal property to the one for rings, but

it’s worth stating on its own.
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Theorem. Let R be a ring, M an R-module, S a multiplicatively closed subset of R, and ℓ : M →
S91M be the localization homomorphism. Let N be an S91R-module, and recall that N is also

an R-module. If ϕ : M → N is an R-module homomorphism, then there exists a unique function

ϕ̃ : S91M → N such that ϕ = ϕ̃ ◦ ℓ. The map ϕ̃ will be a homomorphism of S91R-modules.

Concretely, the map ϕ̃ sends the fraction m
s 7→ ϕ(m)

s .

I mention this explicitly because, in addition to carrying all the interpretation of previous uni-

versal properties that we have seen, this universal property sort of connects two different worlds:

the world of R-modules and the world of S91R-modules. This is illustrated in the diagrammatic

interpretation below, where I have circled and labelled the S91R-modules.

M

S91M N

q
ϕ

ϕ̃
S91R-modules

A restatement of the theorem is “for any R-module homomorphism ϕ fromM to an S91R-module

N , there exists a unique S91R-module homomorphism ϕ̃ making the above diagram commute”. You

will sometimes hear people say that a universal property like this is a kind of “approximation

theorem”. We already said that being an S91R-module is more restrictive than being an R-module,

but we can think of S91M as being the S91R-module that “best approximates” M .

Here’s a comparison: consider the ceiling function ⌈∗⌉ : R → Z. It has the property that

whenever n is an integer and n ≥ x, then n ≥ ⌈x⌉. This shows that among {integers greater than x},
⌈x⌉ is the best approximation to the real number x. I could similarly make a diagram:

x

≥ ≤

⌈x⌉ ≤ n

Localization and exact sequences

I’m going to tell you the payoff of this section up front, to help motivate why the rest of the section

exists. Suppose I want to understand the C[x, y]-module (C[x, y]/(xy))x. To spell it out, first I take

the ring C[x, y] and mod out by the ideal (xy), and then I take that ring and I localize by inverting

the element x. What I’d really like to say is that I can switch the order of the localization and the
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quotient, because if I could I could compute(
C[x, y]
(xy)

)
x

∼=
C[x, y]x
(xy)x

∼=
C[x, y]x
(y)x

∼=
(
C[x, y]
(y)

)
x

∼= C[x]x
= C[x, x91].

Here, the second line follows from the first because in C[x, y]x, x is a unit, so the ideal generated by

y is the same as the ideal generated by xy. We have swapped the order of localization and quotients

twice, once in the first line, and once going from the second line to the third.

Hopefully you see why being able to do these manipulations is appealing. In this albeit contrived

circumstance, it allows us to think about the ring C[x, x91], which seems much easier to understand

than (C[x, y]/(xy))x. And I promise that in number theory, commutative algebra, and algebraic

geometry, computations like this come up not that infrequently.

What exactly would it take to prove something like this? If you read the title of this section,

you might have an inkling about what my answer is, but I do genuinely want you to pause to think

about how you might justify the manipulations I was doing above. I think that I maybe could do

it straight from the definitions, but it would be an absolute slog. Luckily, there is a better way,

thought of by very clever people. Here is the first place that being conversant in exact sequences,

and being willing to draw lots of diagrams, will really streamline our ability to do algebra.

Whenever we have a homomorphism of R-modules f : A → B, we can compose f with the

localization map ℓB : B → S91B. Concretely, the composition map ℓB◦f : A → S91B sends a 7→ f(a)
1 .

Now, the composition will be a map from A to an S91R-module, so by the universal property there

will exist an S91R-module homomorphism so that the following diagram commutes.

A B

S91A S91B

f

ℓA ℓB

f̃

I said it way back in Ring Theory 2, so I’ll remind you that a diagram commutes if composing the

homomorphisms along each directed path gives the same thing in the end. In this diagram, that

means that f̃ ◦ ℓA = ℓB ◦ f .
Now, if instead of just one homomorphism we had a sequence of homomorphisms

A
f−→ B

g−→ C
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we would get an induced sequence of homomorphisms

S91A
f̃−→ S91B

g̃−→ S91C.

The important question here turns out to be “if the original sequence of homomorphisms was exact,

is the induced sequence exact as well?”.

Exercise 5. (localization preserves exact sequences) Prove that if the original sequence of

homomorphisms was exact, the induced sequence is exact as well. (Hint: I am asking you to prove

two sets are equal, so first prove one containment, then the reverse containment.)

This immediately gives us the justification we were looking for in the first place. If

0 → A → B → C → 0

is a SES of R-modules, then by Exercise 5

0 → S91A → S91B → S91C → 0

is a SES of S91R-modules. The first SES tells us that C = B/A, so S91C = S91(B/A) is the order

“quotient first, then localize”. On the other hand, the second SES tells us that S91C = S91B/S91A,

which is the order “localize first, then quotient”.

Comment. I am not going to use any words coming from the theory developed by Eilenberg and

Mac Lane in these notes, but I will note that people usually will say “localization is exact” rather

than saying “localization preserves exact sequences”.

Checking properties locally

One final important feature of localizing modules is that it gives us a way to check properties

“locally”, the way we might in topology. Here’s a couple examples to get us started.

Exercise 6. (being the zero module is a local property) Prove that the following are equiv-

alent:

(i) M = 0.

(ii) For every multiplicative subset S ⊂ R, S91M = 0.

(iii) For every prime ideal p ⊂ R, Mp = 0.

(iv) For every maximal ideal m ⊂ R, Mm = 0.
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Exercise 7. Suppose f : M → N is an R-module homomorphism.

(a) Prove that f is surjective if and only if for all maximal ideals m ⊂ R, f̃ : Mm → Nm is

surjective.

(b) Prove the same statement with the word “surjective” replaced by “injective”.

Exercise 8. Choose either “injective” or “surjective”. Give an example of a homomorphism be-

tween finitely generated Z-modules f : M → N so that

(i) f is not whichever adjective you chose.

(ii) For all but one maximal ideal m ⊂ Z, f̃ : Mm → Nm is that adjective.

I know the first time I learned these facts, they bothered me because it seemed like they “re-

duced” an easy problem like checking if a homomorphism is injective/surjective to the hard problem

of checking infinitely many homomorphisms of much more opaquely-defined modules to see if they

are injective/surjective. The utility of statements like these is that what will usually happen is that

most of the maps f̃ will automatically have whatever property, so you will only need to check like

one or two actual maximal ideals m. Furthermore, altho I don’t have enough space to convince you

here, modules over local rings have lots of nice properties that modules over general rings do not, so

it actually can be an improvement to trade one global computation for several local computations.

Tensor products and flat modules

We come now to the big doozy. I will give it my best shot, but I’m not sure I can do better than

Keith Conrad.

Tensor products over commutative rings

I’m going to start with the commutative case, because it is easier to explain and more common.

Given two R-modules M,N , we can form their tensor product, notated M⊗RN , which will again

be an R-module.

• As a set, M ⊗RN consists of symbols of the form m⊗n, where m ∈ M and n ∈ N , as well as

all finite R-linear combinations of these elements. These symbols are subject to the following

two relationships.

• For all m1,m2 ∈ M , n ∈ N , we have (m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n, and similarly on the

right.

• For all r ∈ R, (rm)⊗ n = m⊗ (rn) = r(m⊗ n).

6
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The symbols m ⊗ n are called “simple tensors”, and by definition they span the tensor product

M ⊗RN . As briefly mentioned in the Linear Algebra notes, the simple tensors can be thought of as

representing some sort of “general product” between the elements m ∈ M and n ∈ N , constrained

only to behave like an R-bilinear map would.

Facts.

• Every simple tensor of the form 0⊗ n or m⊗ 0 is equal to the zero element of the the tensor

product M ⊗R N .

• There is an isomorphism M ⊗R N ∼= N ⊗R M that just swaps all the simple tensors, so it

doesn’t really matter what order you take the tensor product in. (But probably don’t swap

on the fly in the middle of a paper or something.)

Example 1. Take the k-vector spaces V = km, W = kn. Give V the basis ei, and W the basis fj .

Then V ⊗k W ∼= kmn, with a basis given by the simple tensors ei ⊗ fj .

Example 2. Consider the tensor product Z/2Z⊗ZZ/3Z. We have already said that 0⊗n = 0⊗0 for

all n ∈ Z/3Z. On the other hand, since 1 ≡ 3 (mod 2), we have 1⊗n = 3⊗n = 1⊗3n = 1⊗0 = 0⊗0

for all n ∈ Z/3Z. So, all the simple tensors of this tensor product are equal to 0, and hence

Z/2Z⊗Z Z/3Z = 0 as a module. This shows that the third bullet point above can really collapse a

tensor product down.

Comment. The subscript R on a tensor product can be important. This is because often one and

the same abelian group can be considered as a module over different rings, and you need to declare

which one you’re thinking of so the tensor product knows which simple tensors to identify when it

comes to the third bullet point above. The smaller the ring, the fewer things will be identified, so

the tensor product can be much larger. For example, we have said that every C[x]-module is also a

C-vector space, but dimCC[x]/(x2+x+1)⊗C[x]C[x] = 2, while dimCC[x]/(x2+x+1)⊗CC[x] = ∞.

On the other hand, lots of times the ring in question is clear from context, so people will suppress

the subscript.

Comment. There is a lot of confusion in the world over the correct scope of the word “tensor”,

because it gets used to mean “an element of any tensor product”, or to mean “an element of a

really specific kind of tensor product arising in physics”. The physicists do not seem to know that’s

what they mean.

The universal property

Just like everything else, the tensor product also has a universal property, but it’s a little bit of a

different flavor from the other ones. As I’ve mentioned, tensor products were invented originally as

a kind of “generalized bilinear product”. This is true in the sense that given any homomorphism

f : M ⊗RN → C, we can define an R-bilinear map M ×N → C by just sending (m,n) to f(m⊗n).

Bilinearity comes for free because it’s built into the definition. What the universal property says is

that this relationship goes the other way as well.
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Theorem. Let M,N,C be R-modules. If ϕ : M ×N → C is an R-bilinear map, then there exists

a unique R-module homomorphism ϕ̃ : M ⊗R N → C such that ϕ̃(m⊗ n) = ϕ(m,n).

Like all of our other universal properties, this gives us a way to define maps out of a tensor

product, which otherwise might seem like a somewhat daunting task given that there can be so

much weird collapsing that can happen inside a tensor product.

The next few exercises showcase some fundamental things you need to know about tensor prod-

ucts. If you are pretty unfamiliar with tensor products, you should take the results of Exercise 9

to Exercise 15 as axioms, and use them to attempt some problems like Exercise 16, or some qual

problems. If you’re more comfortable with tensor products, you should deepen your understanding

by trying to prove each of these statements using the universal property of tensor products.

Exercise 9. Prove that Z/mZ⊗Z Z/nZ ∼= Z/ gcd(m,n)Z.

Exercise 10.

(a) Prove that for any R-module M , M ⊗R R = M . If you think of the tensor product as like a

multiplication on modules, the module R is like the “unit module” of this multiplication.

(b) Prove that for any multiplicative subset S ⊂ R, S91R⊗R M ∼= S91M .

Exercise 11. Prove that M ⊗R (N1 ⊕N2) ∼= (M ⊗R N1)⊕ (M ⊗R N2). This makes sense because

multiplication distributes over addition.

Exercise 12.

(a) Suppose R is a subring of a larger ring R′, so that R′ is an R-module. Prove that R′⊗RR[x] ∼=
R′[x].

(b) Consider carefully: what is R[x]⊗R R[x]?

Fact. A very important fact we will prove in a second, but which is somewhat hard to prove just

from what we have seen so far, is that for any R-module M and ideal I ⊂ R, M⊗R (R/I) ∼= M/IM .

Exercise 13. Using the above fact, prove that for any ring R, R/I ⊗R R/J ∼= R/(I + J). Notice

that this generalizes Exercise 9.

Exercise 14.

(a) You now have all the information you need to take the tensor product of any two finitely-

generated Z-modules. Pick some f.g. Z-modules and tensor those puppies together!

(b) Pick an f.g. Z-module A and tell me:

(i) What is A⊗ Z[12 ]?

(ii) What is A⊗ Z(2)?
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(iii) What is A⊗Q?

Exercise 15. (from Vakil) Suppose R1, R2, R3 are rings, and suppose there are ring homomor-

phisms R1 → R2 and R1 → R3, so that both R2, R3 are R1-modules.

(a) LetM be an R-module. Prove that R2⊗R1M is an R2-modules (in addition to an R1-module).

(b) Prove that the tensor product R2 ⊗R1 R3 is a ring.

Exercise 16. A classic example you should be familiar with is computing C ⊗R C. Since C is 2-

dimensional as a real vector space, we know from the Example 1 above that C⊗RC is a 4-dimensional

real vector space. From Exercise 15, we know also that C⊗R C is a ring. I only know of three rings

that are also 4-dimensional real vector spaces:

• M2(R),

• C⊕ C,

• H, Hamilton’s algebra of quaternions.

Of these, only C⊕ C is commutative, so it would be my guess that this is what we want.

(a) Show or recall that C ∼= R[x]/(x2 + 1).

(b) Combine several of the above properties to prove that C⊗R C ∼= C⊕ C.

Comment. Perhaps you encountered this already with the above exercises, but often one of the

most difficult parts of a problem involving tensor products is verifying that a given tensor is not

0. Altho it is often pretty easy to spot when a tensor is 0, it is usually nigh impossible to argue

directly from the definition of the tensor product that there is no sequence of valid manipulations

that can convert a given tensor into the zero tensor. The only piece of technology at your disposal

in such situations is the universal property: to prove that your tensor is not 0, use the universal

property to construct a map where the image of that tensor is not 0. The first time you do this

successfully you will feel more powerful than God.

Tensor products, homomorphisms, and flat modules

For now, fix some R-module N . If we have a homomorphism f : M1 → M2, then we get an R-

bilinear map M1 ×N → M2 ⊗R N that sends (m1, n) 7→ f(m1) ⊗ n. Thus, the universal property

tells us that we get a homomorphism f̃ : M1 ⊗R N → M2 ⊗R N . Just like we talked about with

localization, if we have a sequence of homomorphisms

A → B → C,
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we get a sequence of homomorphisms

A⊗R N → B ⊗R N → C ⊗R N,

and if our original sequence is exact, we can ask if the sequence we obtain after tensoring is also exact.

However, unlike for localization, this need not be the case, as the following classic counterexample

demonstrates:

Example 3. Let R = Z, N = Z/2Z, and consider the SES

0 → Z ×2−−→ Z → Z/2Z → 0.

Tensoring with N , we get the sequence

0 → Z⊗Z Z/2Z → Z⊗Z Z/2Z → Z/2Z⊗Z Z/2Z → 0.

Using our tensor product properties above we can rewrite the terms of this more nicely:

0 → Z/2Z → Z/2Z → Z/2Z → 0.

However, if we examine the map on the left, we started with the muliplication by 2 map, so when

we tensor with Z/2Z it becomes the multiplication by 0 map! And that is definitely not injective,

so the resulting sequence fails to be exact on the left side. (But notice, remains exact in the middle

and on the right.)

You can cook up a similar example with R = C[x], N = C[x]/(x), and the multiplication by x

map. Keep these sequences in mind, they are the best counterexamples to a lot of statements, and

frequently appear in one form or another on the qual.

Thus, tensor products can fail to preserve exactness on the left term of a SES, which is the same

as saying that if A → B is injective, it is not necessarily the case that A ⊗R N → B ⊗R N is also

injective. On the other hand, it is always true that they preserve exactness in the middle and on the

right. That is, for any homomorphism f : A → B, we have that (B/ im f)⊗RN ∼= (B⊗RN)/(im f̃),

and in particular, if f is surjective then f̃ is as well. To capture this, people say that tensor product

is right exact.

Comment. Somehow this has failed to come up anywhere except in the preceding paragraph. If

f : A → B is a homomorphism, the module B/ im f is called the cokernel of f , coker f . It is

analogous to the kernel, in the sense that the kernel measures how far a map is from being injective,

and the cokernel measures how far it is from being surjective. For any homomorphism, we thus get

the following four-term exact sequence (the 0s don’t count as terms):

0 → ker f → A
f−→ B → coker f → 0.

I could rephrase what I said in the previous paragraph by saying “tensor product preserves coker-

nels”, and people will actually say that! It’s not even to be highfalutin, just at some point in your
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life you realize that is the correct way to say it.

This gives us a quick proof of the fact that I mentioned earlier: M ⊗R R/I ∼= M/IM . (This

fact is really invaluable!) We start with the SES

0 → I → R → R/I → 0,

and we tensor the sequence by M to get a right-exact sequence

M ⊗ I → M ⊗R ∼= M → M ⊗R/I → 0.

Now, the map M ⊗I → M may not be injective, but just by looking at the definition of the map we

get from the universal property of the tensor product, we can see that this map sends m⊗ i 7→ im,

so we know its image indeed is IM . Thus, exactness tells us that

M ⊗R/I ∼= M/(imM ⊗ I → M) = M/IM.

Comment. It might seem like M ⊗R I should literally just be isomorphic to the submodule IM ,

and the map on the right just be the inclusion, which is injective. This seems supported by our

proof that M ⊗R R ∼= M , because what we did there was rewrote every simple tensor m ⊗ r as

rm⊗ 1, using the R-bilinearity. So, why can’t we just rewrite m⊗ i as im⊗ 1? The reason is that

the simple tensors in M ⊗R I absolutely must have an element of I on the right side, and except in

the trivial situation that I = (1), 1 is not going to be an element of I, so im ⊗ 1 is just an illegal

expression to write down.

We will see in a moment that in a sense, the failure of M ⊗R I to be isomorphic to IM is the

fundamental thing causing the tensor product with M to not be exact on the right.

The next exercise I took from a Michigan qual because I thought it was neat. It demonstrates

the behavior I was talking about in the above comment, and ties together several other things we

have discussed so far. I have broken it up into a lot of small parts, because there is a subtlety of

the shape I mentioned before: you need to prove that the tensor x⊗ y − y ⊗ x is not 0, and doing

so is not straightforward imo.

Exercise 17. (reworked from a Michigan qual) Let R = C[x, y], and let m = (x, y). Note that

m is a maximal ideal of R, and that R/m ∼= C. Since m is an ideal of R, it is a torsion-free R-module.

The main goal of this problem will be to show that m⊗R m is not torsion-free. (!)

(a) Find a generating set for m2.

(b) The quotient m/m2 is a finite-dimensional C-vector space. Find a basis for it.

(c) Find a basis for m/m2 ⊗R m/m2 as a C-vector space.

(d) Consider now the module m⊗R m. The quotient map m → m/m2 induces a map m⊗R m →
m/m2 ⊗R m/m2. Show that the elements x ⊗ y and y ⊗ x of m ⊗R m get sent to linearly

independent vectors under this map. Therefore, x⊗ y ̸= y ⊗ x as elements of m⊗R m.
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(e) Verify that x(x ⊗ y) = x(y ⊗ x), so that x ⊗ y − y ⊗ x is x-torsion. (It is also y-torsion, for

the same reasons.)

(f) There is a short exact sequence of R-modules

0 → m → R → R/m → 0.

Tensoring with m gives the exact sequence

m⊗R m → R⊗R m ∼= m → (R/m)⊗R m → 0.

Prove that the map on the left is not injective.

The failure of tensor products to be exact on the left makes it a special occasion when you find

a module N so that tensoring with that module is exact. A module N is called flat if whenever

0 → A → B → C → 0

is a SES, the tensor product sequence

0 → A⊗N → B ⊗N → C ⊗N → 0

is also exact. As noted above, we already know that the tensor product sequence will be exact in

the middle and on the right, so really the content is that N is flat if tensoring with N preserves

injections.

Comment. It is also the case that if C is flat, and 0 → A → B → C → 0 is an SES, then for any

module M ,

0 → A⊗R M → B ⊗R M → C ⊗R M → 0

is still exact. This was pretty surprising to me when I learned it, it seems like somehow the flatness

of C is able to have a mysterious long-range effect on the injectivity of A⊗RM → B⊗RM . Proving

this fact involves some amount of homological algebra, and I don’t want to get into that in these

notes.

Example 4. We have already met some examples of flat modules.

• R is always a flat module over itself, because if we tensor with R we just get our original

modules and our original homomorphism, so of course it preserves injections.

• As a consequence, any free module is flat, since R is flat and tensor products distribute over

direct sums.

• For any multiplicative subset S ⊂ R, you showed that S91R ⊗R M ∼= S91M . Thus, since we

already showed that localization is exact, tensoring with S91R is exact, and so S91R is a flat

R-module.

12



Algebra SEP Notes Summer ’24

• As a particular case of the previous point, Q is a flat Z-module, since Q = Z(0). Keep this

example in mind! We have already shown that Q is not a finitely-generated Z-module in a

previous set of notes, and having a non-finitely-generated flat module on hand is helpful for

counterexamples, e.g. coming soon in the section on projective modules.

The definition of flatness seems like it would be impossible to check, because in general it seems

like we would have to somehow predict every possible injective homomorphism of modules and

verify that all of them stay injective. It would be a pretty sorry state if that was the case, and the

following fact tells us that really we only need to check certain homomorphisms that we are already

well-acquainted with.

Fact. A module M is flat if and only if for every ideal I ⊂ R, tensoring the injection I → R by M

remains an injection. Equivalently, M is flat if and only if for every ideal I, the map M ⊗R I → IM

which sends m ⊗ i 7→ im is an isomorphism. (It is automatically a surjection, so it is enough to

check that it is injective.)

Exercise 18. Let R be a ring, and M an R-module.

(a) Prove that if M is flat, then M is torsion-free.

(b) Suppose R is a PID. Use the fact above to prove that if M is torsion-free, then M is flat.

(c) What are the finitely-generated flat Z-modules?

The above exercise, and others that have appeared in this section, suggest that the failure of a

module to be flat in general has something to do with torsion. In the case of PIDs, you have shown

that the torsion determines whether or not the module is flat, but as we saw in Exercise 17, over a

non-PID you can have torsion-free modules that fail to be flat. There is a story to be told about

trying to measure “how much a module fails to be flat”, which is closely related to torsion. I will

say no more about it other than to say that this is the reason why Tor is called Tor, if that means

something to you.

Flat modules don’t appear very often on the qual, which I personally think is a pity, but they did

appear in January of this year, in the following problem. I have not yet defined what an R-algebra

is, but we’ve already met them in Exercise 15: an R-algebra is an R-module that also happens to

be a commutative ring, so that the ring multiplication commutes with scalar multiplication.

Exercise 19. (January 2024 Problem 4, notation altered) Let R be a commutative ring, and

let A and B be commutative R-algebras.

(a) Prove that if B is flat over R, and f is a non zero divisor in A, then f ⊗1 is a non zero divisor

in A⊗R B.

(b) Prove that the flatness condition above is necessary by giving an example where part (a) fails

if B is not flat over R.

13
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Comment. I could alternatively have said, a commutative R-algebra A is a commutative ring A with

a ring homomorphism R → A, so that A can also be thought of as an R-module. This definition

needs to be slightly modified if you want to allow A to be noncommutative, which you should

because M2(C) should be a C-algebra.

Why are they called “flat” modules?

Great question, I’d like to know as well. So would Serre, and he coined the term! (Unless it was

maybe Eilenberg or Cartan, but he was the first one to use it in a publication.) If I had to guess, I’d

hazard that the motivation might have had to do with the fact that flat modules are torsion-free,

so perhaps the phrase “flat” was supposed to capture some idea of being “non-twisted”. That’s

pure speculation, but this much is clear: Serre isolated flatness in a purely algebraic context, as

the right condition to preserve certain properties he was interested in. According to Brian Conrad

on that mathoverflow post, Serre credits Grothendieck with the insight that in the context of

algebraic geometry, flatness is the right condition to ensure that a family of geometric objects varies

“continuously” in the right way.

Daniel Erman’s answer to that same mathoverflow post discusses this a little more. In that

answer, he gives the example (which I’m rephrasing so I don’t have to explain what Spec means)

of the ring map k[t] → k[x, y, t]/(xy− t) which sends t 7→ t. Basically, you can understand this ring

map geometrically by graphing xy = t on Desmos and watching what happens when you hit play

on the t parameter. You can see that the shape of the graph varies nicely continuously, with only

a little weirdness at t = 0, where the two branches of the hyperbola meet to become the union of

the two coordinate axes. But visually, that seems like what they should do. On the other hand, his

second example involves the non-flat map k[t] → k[x, y, t](t(xy − 1)). If you were to graph txy = t

on Desmos, whenever t = 0 you would just get the hyperbola xy = 1, but when t = 0 you would

suddenly get the vacuous equation 0 = 0, whose solutions are all the points of the plane. This kind

of bizarre behavior is the sort of thing flatness prevents.

If you’re interested, this old course webpage has links to the original papers in which Serre uses

the term “flat” (French “plat”) in both the original French and English translations.

Tensor products over noncommutative rings

I have avoided talking about tensor products over noncommutative rings, because I didn’t want to

clog up the exposition fussing about left versus right modules, but it is important to know that you

can take tensor products over noncommutative rings as well. Here are the key things that can be

different for noncommutative rings:

1. In order to form the tensor product M ⊗R N , M must be a right R-module and N must be

a left R-module.

2. The relation (rm)⊗n = m⊗(rn) = r(m⊗n) for commutative rings is replaced by the relation

mr ⊗ n = m⊗ rn.
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3. Because we can no longer “pull the r out”, the resulting tensor product will not necessarily

be an R-module, only an abelian group. It will only be an R-module if one of M or N also

has an additional R-module structure on the other side. A module over a noncommutative

ring that has a structure as both a left and a right R-module is called an R-bimodule.

4. The universal property will no longer reference R-bilinear maps, but rather will reference what

are called R-balanced maps. An R-balanced map ϕ : M ×N → P is a function that is

• additive in each component, i.e. ϕ(m1 +m2, n) = ϕ(m1, n) + ϕ(m2, n), and similarly on

the right; and,

• allows elements of R to “pass across the arguments”: ϕ(mr, n) = ϕ(m, rn).

The most important tensor product properties are still true for tensor products over noncom-

mutative rings. In particular:

• M ⊗R (N1 ⊕N2) ∼= (M ⊗R N1)⊕ (M ⊗R N2), and similarly on the left.

• If I is a left ideal of R, then we can form the quotient R/I as an abelian group (but not as a

ring), and it will be a left R-module. In this case, we have that M ⊗R R/I ∼= M/MI. There

is a similar property for right ideals.

Exercise 20. (January 2021 Problem 2, modified) LetR = M2(C), the non-commutative ring

of 2× 2 matrices over C.

(a) Give examples of a simple left R-module M and a simple right R-module N .

(b) Can you find another simple left R-module M ′ that is not isomorphic to M? (Either find one

or explain why there is none such.)

(c) Compute dimC(N ⊗R M). (NB You can do this by working directly with the tensors.)

Projective modules, and maybe a hair about injective modules

We return to a bit of possibly more familiar territory, to discuss a few more properties of the modules

HomR(M,N).

Our previous experience with localizations and tensor products suggests that it would be inter-

esting to find out how the modules HomR(M,N) interact with sequences. For now, we fix a module

M . If we have a homomorphism ϕ : X → Y , we get a map ϕ∗ : Hom(M,X) → Hom(M,Y ) by

sending f 7→ ϕ ◦ f . (You may hear this being called a “pushforward”.) I think it’s helpful to have

a picture in your head of this:

M

X Y
f

ϕ∗(f):=ϕ◦f

ϕ

15
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What I’m saying above is that given any red arrow ϕ, we can transform any f : M → X into

a function ϕ∗(f) : M → Y by “sliding the tip of f along ϕ”. It sort of resembles the definition of

vector addition. Now, given a SES

0 → A → B → C → 0

we get a sequence

0 → HomR(M,A) → HomR(M,B) → HomR(M,C) → 0.

Is this sequence exact?

No, and we can turn to our old counterexample

0 → Z ×2−−→ Z → Z/2Z → 0.

If we apply HomZ(Z/2Z,−) to each term of the sequence we get the sequence

0 → 0 → 0 → Z/2Z → 0.

This new sequence is not exact because the it’s not exact at the Z/2Z term on the right, since the

map 0 → Z/2Z is not surjective.

Exercise 21. We can modify this sequence a bit to make it a little less trivial-looking. Consider

the sequence

0 → Z/4Z → Z/4Z → Z/2Z → 0.

(a) Apply HomZ(Z/2Z,−) to each of the terms of this sequence, and write down the sequence

you get at the end.

(b) Confirm that this is again an example where the resulting sequence is not exact at the right

term, but is exact in the middle and on the left.

This behavior holds in general: it is always true that taking HomR(M,−) preserves exactness

in the middle and on the right, but it may not preserve exactness on the left, i.e. may not preserve

surjections. We say thatHom is left exact. Saying that the sequence stays exact on the middle and

right is the same as saying that for any homomorphism ϕ : A → B, we have that HomR(M, kerϕ) =

kerϕ∗.

Just like with tensor products, the fact that taking Hom can fail to be exact makes it interesting

whenever we find a module M so that taking Hom is exact. A module M is called projective if

whenever 0 → A → B → C → 0 is exact, so too is

0 → HomR(M,A) → HomR(M,B) → HomR(M,C) → 0.

16



Algebra SEP Notes Summer ’24

Exercise 22. Prove that a free module is projective. That is, let F be free, and let ϕ : B → C be

surjective, and prove that ϕ∗ : HomR(F,B) → HomR(F,C) is also surjective. (You may assume

that F is finite rank, but it is not necessary.)

It turns out we can be a lot more specific with characterizing projective modules than we can

with flat modules.

Exercise 23. Prove that the following are equivalent.

(i) The module P is projective.

(ii) has the following lifting property: whenever 0 → A
f−→ B

g−→ C → 0 is a SES, and ϕ : P → C

is any map, there exists a map ϕ̃ : P → B so that ϕ = g ◦ ϕ̃. In a diagram:

P

0 A B C 0

ϕ
ϕ̃

f g

(iii) Any exact sequence 0 → A → B → P → 0 splits.

(iv) The module P is a direct summand of a free module.

Hints:

(i) ⇒ (ii) Apply HomR(P,−) to the sequence. Notice that we know that idP ∈ HomR(P, P ).

(iii) ⇒ (iv) You may use that any module is a quotient of a free module. (We already discussed

this in the case of f.g. modules.)

(iv) ⇒ (i) If F is a free module and F = P ⊕ Q, show that any homomorphism P → C can be

extended to a homomorphism F → C. Then, use that free modules are projective.

Example 5.

• I think I didn’t quite state this outright, but if R is a PID, then any submodule of a free

module is free (no restriction to finitely-generated modules). As a consequence, a module over

a PID is projective iff it is free.

• Consider Z/2Z as a Z/6Z-module. By CRT, we have that Z/6Z ∼= Z/2Z⊕ Z/3Z, so Z/2Z is

a direct summand of a free module, hence is projective. However, any free f.g. Z/6Z-module

has order a power of 6, so Z/2Z cannot be a free module.

• For a noncommutative example, consider the ring M2(C) and the simple left module V = C2.

We showed at the top of this document that M2(C) ∼= V ⊕ V , so V is a projective module,

but similar to the previous example, V cannot be free because any free module has dimension

divisible by 4 as a complex vector space.

17
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• A long time ago we talked about the ring R = Z[
√
−5], which had the curious property that 6

has two factorizations into irreducibles: 6 = 2 ·3 = (1+
√
−5)(1−

√
−5). It turns out that the

ideal I = (2, 1 +
√
−5) ⊂ R is not a principal ideal, and therefore it is not a free R-module.

However, it is a projective R-module. In fact,

v1 =

(
2

1−
√
−5

)
, v2 =

(
1 +

√
−5

2

)

forms a basis for I ⊕ I, so I ⊕ I ∼= R⊕2.

Exercise 24. (January 2022 Problem 3 (b)) Let M be a projective module over R and S ⊂ R

a multiplicative set. Prove that S91M is a projective R[S91]-module.

Exercise 25. (January 2021 Problem 3) Two questions about projective modules.

(a) Show that a projective module over an integral domain is torsion free.

(b) Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of finitely generated modules over a

commutative, Noetherian ring. Prove the following OR give a counterexample:

(i) If M1 and M2 are projective, then so is M3.

(ii) If M2 and M3 are projective, then so is M1.

Exercise 26. (Projective modules are flat)

(a) Prove that a projective module is flat.

(b) Prove that Q is not a projective Z-module, so we need not have an implication in the other

direction.

A fun fact that I didn’t learn until recently is that for f.g. modules over any ring, M is flat iff

M is projective. The way you would prove this is by showing that both conditions are equivalent to

M being locally free, which means that for every maximal ideal m ⊂ R, Mm is a free Rm-module.

Homs the other way

We have talked a lot about taking Homs like HomR(M,−), but you could equally well talk about

taking Homs like HomR(−,M). This presents an interesting new behavior: given a homomorphism

ϕ : X → Y , we get a homomorphism going the other direction ϕ∗ : HomR(Y,M) → HomR(X,M)

(also called a “pullback”). In diagram form:

X Y

M

ϕ

ϕ∗(f):=f◦ϕ
f

18
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This time, we slide the tail of f : Y → M backwards along the red arrow ϕ to get a function

ϕ∗(f) : X → M . Notice again the similarity to vector addition. To distinguish between the two

kinds of Hom, people will call HomR(M,−) covariant Hom (because the homomorphisms go the

same way), and HomR(−,M) contravariant Hom (because the homomorphisms swap).

Like before one can ask what happens to exact sequences

0 → A → B → C → 0.

They flip around, and it turns out they don’t remain exact, but

HomR(C,M) → HomR(B,M) → HomR(A,M) → 0

will still be exact. It’s a little bit of a puzzle to decide what sidedness of exactness to call this,

but the common consensus is that we should call contravariant Hom left exact, just like covariant

Hom. (It’s the left side of the original diagram that it preserves, it just mirror images it along the

way.)

Just like with covariant Hom, there’s a special name for the modules that make this exact. They

are called injective modules. They’re a lot less nice that projective modules, but there are good

reasons to learn about them that I won’t get into here. I will simply note that the Z-modules Q and

Q/Z are both injective, and in general injective modules have a feeling of having “highly dividable

elements”.

Algebras over a ring

I just wanted to mention briefly the definition of an “algebra” over a commutative ring R. We’ve

already discussed that an R-algebra is an R-module A that is also a ring (not necessarily com-

mutative), with the property that scalar multiplication by elements of R commutes with the ring

multiplication in A. We can also define an R-algebra as a (not necessarily commutative) ring

A together with a ring homomorphism ϕ : R → A, sometimes called the structure homomor-

phism. In order to make sure that scalar multiplication commutes with ring multiplication, i.e./

a1(ϕ(r)a2) = ϕ(r)a1a2, we need for the image of ϕ to consist entirely of elements that commute

with every a ∈ A. The subset of A consisting of elements that commute with every other element

is called the center of A, and is denoted Z(A).

An R-algebra homomorphism between two R-algebras A,B is a ring homomorphism A → B

that is also an R-module homomorphism. Equivalently, if A,B have structure homomorphisms

ϕA, ϕB, an R-algebra homomorphism between them is a ring map f : A → B so that ϕB = f ◦ ϕA.

That is, so that the following diagram commutes.

A B

R

f

ϕA
ϕB
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You already know several examples of algebras.

Example 6.

• Given a commutative ring R, any quotient ring is an R-algebra.

• Any polynomial ring R[x1, . . . , xn] is an R-algebra, as is any quotient of a polynomial ring.

• The ring of n× n matrices with entries in R, Mn(R), is an R-algebra.

• More generally, for any R-module M , EndR(M) is an R-algebra.

• Given a field K, any field extension L/K is a K-algebra.

• The field of real numbers R has a very interesting 4-dimensional algebra, Hamilton’s algebra

of quaternions H. There is a more general notion of something called a “quaternion algebra”

over any field K, inspired by Hamilton’s quaternions.

Comment. A minor warning, some people in the world will use the word “algebra” to mean some-

thing more general than what it means here. For example, some people want to let the octonions

O be an R-algebra, and would prefer to call the algebras we’ve defined “associative algebras”.
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