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Group Theory 1
Examples to know, and the isomorphism theorems

by Ivan Aidun

These are notes interspersed with exercises. The purpose of these notes is to be more fleshed out

than Evan Dummit’s old notes, but shorter and more focused than a textbook treatment. Halfway

between Dummit and Dummit and Foote, so to speak. I hope these are helpful to you!

Examples

Here are some groups that you should be familiar with. If you want more examples than you could

ever know what to do with, check out this page.

1. Finite abelian groups.

2. The dihedral group Dn, which is the symmetries of a regular n-gon.

3. The symmetric group Sn, which is the group of permutations of a set with n elements.

4. The alternating group An, which is the group of even permutations.

5. The quaternion group Q = {±1,±i,±j,±k} subject to the usual laws of quaternion multipli-

cation i2 = j2 = k2 = ijk = −1 and ab = −ba.

6. The linear groups GLn(R), invertible n× n matrices with entries in R, and SLn(R), determi-

nant 1 matrices.

7. The free group Fn on n generators or “letters”, which is the group of all “words” (i.e. arbitrary

strings) in the generators and their inverses, gi, g
91
i , subject only to the obvious relation

gig
91
i = g91i gi = e.

8. Given any group G, we can form another group consisting of all the isomorphisms G ∼→ G.

This is called the automorphism group of G, denoted Aut(G). For example, Aut(Z/nZ) =
(Z/nZ)×, and for a free module Rn over a commutative ring R, Aut(Rn) = GLn(R).

Comment.

• It is common to write the group operation on an arbitrary abelian group as addition, but

the group operation on any other arbitrary group as multiplication. There are two reasons

why abelian groups get to be different. First, most abelian groups actually do come to us as

additive groups of rings. Second, the automorphisms of a group like Z/nZ or Z2 are naturally

written as multiplication, so if we wrote these groups as multiplication we would be left trying

to write their automorphisms as exponentiation, which is somewhat awkward. However, there

are times when an abelian group is genuinely better written multiplicatively, e.g. the group of

nth roots of unity in C naturally has group operation multiplication.
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For these reasons, I will sometimes distinguish between Z/nZ and Cn, the latter being the

cyclic group of order n but with group operation written multiplicatively. So, for example,

I’d prefer to say “Q admits a surjective homomorphism to C2” rather than “to Z/2Z”.

• It is standard to denote the identity element of an arbitrary multiplicatively-written group as

either e or 1, or eG or 1G if the group needs to be specified. In the context of writing exact

sequences involving groups, I use 1 to mean the trivial group.

• It is standard to denote a subgroup of a group by using the < symbol rather than ⊂. For

example, “let H < G be a subgroup”.

• Some people denote the dihedral groups as D2n, so they write e.g. D8 to mean what I will

call D4. In this stackexchange post Keith Conrad claims that this is the preferred convention

among group theorists (and is the convention in Dummit and Foote).

• The linear groups GL and SL are usually defined over a field, on past quals usually C,R, or
Fp, but you can define these for any commutative ring R, and there has been a question about

SLn(Z) before (albeit not a very hard one). Note that if R is not a field, then GLn(R) consists

of invertible n× n matrices with coefficients in R whose inverse also has coefficients in R.

• Topologists and group theorists will sometimes write Fn for the free group on n letters.

Reminder about normal subgroups

For groups you have to be careful because you can’t take a quotient by any subgroup, but rather only

by normal subgroups. A subgroup N < G is normal if for any g ∈ G, gNg91 = N , or equivalently

gN = Ng, or equivalently for all n ∈ N there exists ng ∈ N so that gng91 = ng. (This condition is

required so that coset multiplication works the way you want it to: (g1N)(g2N) = g1g2N .) Normal

subgroups are denoted with a triangle: N ◁ G.

Exercise 1. Let ϕ : G → H be a homomorphism. Prove that kerϕ is a normal subgroup of G.

Exercise 2. (January 2024 Problem 1 (c)) Give an example of a group G and a subgroup H,

and a subgroup K of H, such that K is normal in H, and H is normal in G, but K is not normal

in G.

The next problem is the first problem I could actually solve when I was studying for the qual.

Exercise 3. (August 2018 Problem 2) For a finite group G, denote by s(G) the number of

subgroups of G.

(a) Show that s(G) is finite.

(b) Show that if H is a nontrivial normal subgroup of G, then s(G/H) < s(G).

(c) Show that s(G) = 2 if and only if G is cyclic of prime order.

(d) Show that s(G) = 3 if and only if G is cyclic of order p2 for a prime p.
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Conjugation and the center

Given an element h ∈ G, an element of the form ghg91 is said to be conjugate to h. The set of all

elements conjugate to h is called the conjugacy class of h. In these notes, I am going to denote

the conjugacy class of h by [h]. Both Dummit and Foote as well as the book I learned group theory

from, Groups and Symmetry by Armstrong, avoid giving a notation for the conjugacy class of h.

Wikipedia gives Cl(h), which is sensible, but I don’t like it because it collides with the notation for

the class group of a number field.

Exercise 4. Prove that a subgroup H < G is normal iff it is a union of conjugacy classes.

The center of G, denoted Z(G), is the set of elements z ∈ G that commute with every other

g ∈ G. Equivalently, the center consists of all z ∈ G so that [z] = {z}.
Exercise 5. Prove that Z(G) is a normal subgroup of G.

Exercise 6. (January 2018 Problem 4, modified) Let G be a finite group. Denote by Aut(G)

the group of automorphisms of G, and by Z(G) ⊂ G the center of G.

(a) Let Inn(G) ⊂ Aut(G) be the subgroup consisting of automorphisms coming from conjugation,

i.e. automorphisms of the form x 7→ gxg91 for some g ∈ G. Prove that Inn(G) is isomorphic

to G/Z(G).

(b) Show that if G/Z(G) is cyclic, then G is abelian.

(c) Show that if Aut(G) is cyclic, then G is abelian.

(d) Show that if G is abelian, then x 7→ x91 is an automorphism of G. (NB in fact this is an if

and only if.)

(e) Deduce that there is no group G such that Aut(G) is a nontrivial cyclic group of odd order.

Dihedral groups

Let us imagine a regular n-gon in the plane so that the vertices are on the unit circle at angles

2πk/n, 0 ≤ k ≤ n− 1. One can show that the dihedral group Dn is generated by a rotation r, say

counterclockwise by 2π/n, and a reflection s, say about the horizontal axis. (I do not know why s

is the letter chosen for the reflection other than that it is the letter after r. Some texts will instead

call these ρ, σ because they’re fancy.) The order of r is n, and the order of s is 2, and they have

the relationship srs = r91.

We say that Dn has the presentation ⟨r, s : rn, s2, srsr⟩, where writing a string on the right of

the presentation is the same as saying “string = e in this group”. The relationship srs = r91 means

that s and r don’t quite commute, but they come close enough that we know what changes we have

to make when we try to commute them. So, even though this group is nonabelian, we can still write

every element as sirk (or the other way around if you prefer) where i ∈ {0, 1}, 0 ≤ k ≤ n− 1. This

idea of using group relations to write elements in a standardized way to make computations easier
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is common in group theory, and one often says that the standardized way of writing them is the

normal form. E.g. in topology, the fundamental group of the Klein bottle is the nonabelian group

with presentation ⟨a, b : aba91b⟩, and you can do the same kind of thing to write every element in a

normal form like ambn.

Exercise 7. (Familiarize yourself with Dn)

(a) Draw or cut out your favorite n-gon (n ≥ 4 bc triangles are a little misleading sometimes)

and visually convince yourself that srs = r91.

(b) Write down the Cayley table (multiplication table) for D4. Yes, I’m serious.

(c) Find all the subgroups of D4 and draw its lattice of subgroups. Do the same for D5.

(d) Find all the distinct conjugacy classes of D4 and D5.

(e) Find all the normal subgroups of D4 and D5.

Symmetric and alternating groups

The symmetric group Sn consists of all bijections π : {1, . . . , n} → {1, . . . , n}, with the group oper-

ation being function composition. (Using σ, π as the preferred letters for an arbitrary permutation

is standard.) One can denote a permutation using “two-line” notation, by writing a two-row matrix

with n in the top row and π(n) in the bottom row, e.g.:(
1 2 3 4

3 4 1 2

)
.

Since the top row is always the same, you can also just write the second line, so the above could

just be written as π = 3412.

However, both of these notations are clunky if we need to compose two permutations, e.g. what

is 3412 ◦ 3124? For this reason, nobody actually uses either of those notations. Instead, the good

notation is cycle notation. A cycle in a permutation is what you get by applying π iteratively

to a single element: n, π(n), π(π(n)), . . . . Any given permutation splits up into a disjoint union of

cycles, and so we can denote a permutation by its set of cycles. For example, the permutation I

wrote as 3412 before has the cycle representation (13)(24), meaning that 1 has been swapped with 3

and 2 with 4. The permutation 3124 has cycle representation (123). (We omit any cycles of length

one.)

Cycles are composed right-to-left, like functions, so the composition I asked about in the previous

paragraph becomes (13)(24)(123). We can determine the cycle decomposition of the product by

tracking each n:

(i) Starting with n = 1 and going right-to-left, we have 1 7→ 2 7→ 4.

(ii) Since we ended on 4, now we start with 4 and have 4 7→ 2.
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(iii) We have 2 7→ 3 7→ 1. This completes the cycle (142).

(iv) Only 3 is left, and must be mapped to itself. We can also see that going right-to-left we have

3 7→ 1 7→ 3, as expected.

Thus, (13)(24)(123) = (142).

Exercise 8. (Familiarize yourself with Sn)

(a) Compute (1524)(14)(12)(34).

(b) Prove that Sn is generated by elements of the form (ij) (called transpositions). (Hint: prove

that an arbitrary cycle can be written as a product of transpositions.)

(c) Prove that Sn is generated by elements of the form (i, i+ 1) (adjacent transpositions).

(d) Prove that Sn is generated by elements of the form (1i).

(e) Prove that Sn is generated by (12) and (12 . . . n).

(f) Prove that two elements π1, π2 ∈ Sn are conjugate iff they have the same cycle-type. That

is, iff the number and lengths of the cycles in the cycle decomposition of π1 is the same as for

π2.

(g) Find all the subgroups of S4 and draw its lattice of subgroups. Which subgroups are normal?

The symmetric group has an important subgroup, the alternating group An. By the previous

exercise, every permutation can be written as a product of transpositions. The number of transpo-

sitions in a given representation is not an invariant of the permutation, but whether that number is

even or odd actually is. The group An is the subgroup consisting of all even permutations, that is,

all permutations whose representation as a product of transpositions has an even number of terms.

Equivalently, Sn can be embedded into GLn(Z) as the permutation matrices, and then there is

a homomorphism GLn(Z) → {±1} that takes a matrix to its determinant. (A matrix in GLn(Z)
always has determinant ±1, because 1 = det(AA91) = det(A) det(A91), but det(A) and det(A91) are

both integers.) Composing these two maps gives a homomorphism ϵ : Sn → {±1} called the sign

homomorphism, which is surjective because it takes any transposition to −1. The subgroup An

is the kernel of this homomorphism, which moreover shows that it is a normal subgroup of Sn.

Exercise 9. (Familiarize yourself with An)

(a) Prove that a 3-cycle is even. More generally, any odd-length cycle is even.

(b) Prove that An is generated by 3-cycles, (ijk). (Hint: consider products of disjoint transposi-

tions, and products of non-disjoint transpositions.)

(c) Find all the conjugacy classes in A4.

(d) Give an example of two elements π1, π2 ∈ A4 so that [π1] = [π2] in S4 but [π1] ̸= [π2] in A4.
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For n ≥ 5, An is a simple group, i.e. it has no nontrivial normal subgroups. (I guess this is also true

of A3 but for a sorta silly reason.)

The quaternion group Q

Exercise 10. (Familiarize yourself with Q)

(a) Find all the conjugacy classes in Q.

(b) Find all the subgroups of Q, and draw its lattice of subgroups. Which subgroups are normal?

Free groups

The free group Fn has the following universal property: given any group G, and any function of sets

f : {1, . . . , n} → G, there is a unique homomorphism f̃ : Fn → G such that f̃(gi) = f(i). I don’t

have any really good questions to test your understanding of this one, if you come up with one let

me know.

Isomorphism Theorems

Theorem (first isomorphism theorem). Let ϕ : G → H be a group homomorphism. Then kerϕ is

a subgroup of G, imϕ is a subgroup of H, and the induced homomorphism G/ kerϕ → imϕ is an

isomorphism. In particular, if ϕ is surjective, then H ∼= G/ kerϕ.

Theorem (second isomorphism theorem). Let G be a group, H < G a subgroup, and N ◁ G a

normal subgroup of G. Then HN = {hn : h ∈ H, n ∈ N} is a subgroup of G, N is a subgroup

of HN , (HN)/N is a subgroup of G/N , H ∩ N is a normal subgroup of H, and the composition

H ↪→ G ↠ G/N induces an isomorphism H/(H ∩N) ∼→ (HN)/N .

Theorem (third isomorphism theorem). Let G be a group, N a normal subgroup. Then if H is

an subgroup of G such that N < H < G, then H/N is a subgroup of G/N . If, moreover, H is also

normal, then H/N is normal in G/N , and the composition G ↠ G/N ↠ (G/N)/(H/N) induces an

isomorphism G/H ∼→ (G/N)/(H/N).

Theorem (lattice theorem). The correspondence that takes a subgroupH < G containing a normal

subgroup N to the quotient H/N gives a bijection

{subgroups of G containing N} ∼→ {subgroups of G/N .}

Furthermore, this bijection preserves inclusions, products, and intersections.
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