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Group Theory 3
Semi-direct products, nilpotent groups, and solvable groups

by Ivan Aidun

These are notes interspersed with exercises. The purpose of these notes is to be more fleshed out

than Evan Dummit’s old notes, but shorter and more focused than a textbook treatment. Halfway

between Dummit and Dummit and Foote, so to speak. I hope these are helpful to you!

Semidirect products

An example

I’m going to begin describing semidirect products with an example you already know, dressed up

in an unfamiliar garment. Often, we think about the group Z/nZ acting on an n-gon by rotations.

Imagine an n-gon made out of one continuous pipe, and within the pipe there is a fluid flowing

around (maybe it’s some modern art piece which nobody understands). Consider the group which

acts on this object, where the possible symmetries are to rotate the n-gon in the direction of the

fluid flow, or to reverse the direction the fluid is flowing.

We will call this group the oriented cyclic group of order n, OCn, and concretely the elements

of this group are pairs of the form (a, o), where a ∈ Z/nZ is the position of the element (how much

we’re rotating), and o ∈ {±1} is the orientation (whether or not we’re reversing the flow after the

rotation). The group multiplication is defined so that the orientations multiply, so the composition

of two negatively oriented elements is positively oriented. The positions add normally if they are

both positively oriented, but if the first element is negatively oriented, instead the second position

is subtracted from the first, because in that case the second rotation will happen in the opposite

direction. In symbols, in all cases we have:

(a1, o1) · (a2, o2) = (a1 + o1a2, o1o2).

For example, if n = 5, here are a few computations in this group:

(3, 1) · (2,−1) = (0,−1), (1,−1) · (3,−1) = (1, 1),

(2,−1) · (3, 1) = (4,−1), (3,−1) · (1,−1) = (2, 1).

Exercise 1.

(a) Verify that OCn is a group. Is the multiplication associative? What is the identity? What is

the inverse of (a, o)?

(b) What is the order of OCn?

(c) Write out the multiplication table for OC3. Yes, I’m serious.

(d) What is the more common name for this family of groups?
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I have disguised these groups you already know in order to emphasize somewhat that this

construction depended only on one thing: the fact that the groups Z/nZ all have an action by a

cyclic group of order 2, namely a 7→ −a. This isn’t just an action of {±1} on a set of size n that

coincidentally happens to be a group: in addition, the map a 7→ −a is a group homomorphism

Z/nZ → Z/nZ. Inside the group OCn (I’m not dropping the pretense), we can see how to get

−a: first reverse the fluid flow, then rotate by a, then reverse the fluid flow back. In symbols:

(−a, 1) = (0,−1) · (a, 1) · (0,−1)91. The negation action is built into the group as a conjugation!

The general case

Let N,Q be groups such that Q acts on N on the left. As mentioned, we are going to require that

the action of Q on N “respects the group structure”, so instead of Q acting on N by arbitrary

functions, we want for Q to act on N by homomorphisms. This means that the action satisfies

(q · n1)(q · n2) = q · (n1n2), where q · n indicates the action of q on the element n. If we think about

a general group action as a homomorphism Q→ SN , here instead I’m asking for a homomorphsim

Q→ Aut(N).

If we have such an action, we can construct the semidirect product N ⋊ Q. The semidirect

product is a group whose underlying set is N ×Q, with multiplication defined by (n1, q1)(n2, q2) =

(n1(q1 · n2), q1q2). You should think of this as almost being the direct product N × Q, but the

multiplication law has been “twisted” by the action of Q. It might be better to call this one

semi-direct product of N and Q, because we can get non-isomorphic products by choosing different

actions of Q on N (always satisfying (q · n1)(q · n2) = q · (n1n2)).
With this definition, one can see that N ⋊ Q has a normal subgroup isomorphic to N con-

sisting of elements of the form (n, eQ), and a subgroup isomorphic to Q consisting of elements of

the form (eN , q). The explanation for the cryptic multiplication is that it is defined so that con-

jugating an element of the normal subgroup (n, eQ) by (eN , q) corresponds to the action of q on

n: (eN , q)(n, eQ)(eN , q
91) = (q · n, eQ). Thus, our original group action has been “encoded” in the

semidirect product as an action by conjugation. The subgroup isomorphic to Q need not be normal,

as fixing an element n ∈ N , the set of elements {(n(q ·n91), q) : q ∈ Q} forms a conjugate subgroup.

As noted above, which specific action you choose of Q on N can change the isomorphism type

of the group N ⋊Q. In situations where more than one semidirect product between the same two

groups might come up, people will name the actions, e.g. ϕ, ψ : Q → Aut(N), and write N ⋊ϕ Q

versus N ⋊ψ Q.

Notice that the direct product is a special case of the semidirect product: if Q⟳N trivially

via q · n = n for all pairs q ∈ Q and n ∈ N , then N ⋊Q = N ×Q.

Exercise 2. How many nonisomorphic groups of the form Z/7Z ⋊ C6 are there?

Semidirect products and splitting sequences

If N,Q are groups, and Q⟳N by homomorphisms, then there is a SES of groups

1 → N → N ⋊Q→ Q→ 1.
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Moreover, this exact sequence splits on the right, via the map q 7→ (eN , q). More generally, whenever

N ▷ G, if the exact sequence

1 → N → G→ G/N → 1

splits on the right, then (G/N)⟳N via conjugation, and G ∼= N ⋊ G/N . In this case, letting H

be the image of the splitting homomorphism, we say that G is the internal semidirect product

of N and H.

With groups there is a real difference between a SES splitting on the right versus on the left. If

the SES

1 → N → G→ G/N → 1

splits on the left, then not only is G ∼= N ⋊G/N , but actually G ∼= N ×G/N .

Exercise 3. Consider the group G = SL2(F3).

(a) What is the order of G?

(b) Show that G has a subgroup H isomorphic to Q.

(c) Show that H is normal.

(d) Prove that G ∼= Q⋊ C3 by finding a splitting map C3
∼= G/H → G.

The semidirect product test

There’s a standard test to show that G is the (internal) semidirect product of its subgroups N and

Q. If:

• N is normal in G,

• N ∩Q = {e} is the set containing only the identity element, and

• G = NQ (that is, every element g ∈ G can be written as nq for some n ∈ N and q ∈ Q)

then G = N ⋊Q (where the action of Q on N is conjugation in G).

The commutator (derived) subgroup

An important subgroup of a group is the commutator subgroup, sometimes also called the derived

subgroup. (I will not call it that because I think this terminology is misleading if you’re familiar

with other uses of the term “derived”.) The commutator subgroup of G, denoted [G,G], is the

group generated by elements of the form ghg91h91, which are called commutators. This means a

general element of [G,G] will look like g1h1g
91
1 h

91
1 . . . gnhng

91
n h

91
n . You will also (in the next section)

see the notation [H1, H2] for H1, H2 subgroups of a given group G. In this case, the notation means

the subgroup generated by commutators h1h2h
91
1 h

91
2 where hi ∈ Hi, i = 1, 2.
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The commutator subgroup will be trivial if and only if G is abelian. For any group G, [G,G]

is a normal subgroup of G. Here’s a tricky way to see this, relying on the fact that commutators

and conjugation are closely linked: suppose x ∈ [G,G], and g ∈ G, then gxg91x91 ∈ [G,G] because

it is a commutator, so call y = gxg91x91. Then we have gxg91 = yx, and yx ∈ [G,G] since both of

x, y ∈ [G,G].

Furthermore, G/[G,G] is always an abelian group, since in the quotient every commutator is

trivial. The group G/[G,G] is called the abelianization of G, denoted Gab. It has the universal

property: if A is an abelian group, and f : G → A is a homomorphism, then there exists a unique

homomorphism f̃ : Gab → A so that f = f̃ ◦ q, where q : G→ Gab is the quotient map. In diagram

form:

G

Gab A

q f

f̃
abelian groups

This is akin to the universal property of S91M , and analogous to my comment in that section, you

should think of the abelianization as the “best abelian approximation” to G. When G is finite, the

universal property has a payout in terms of sizes: Gab is the largest abelian quotient of G.

Exercise 4. For each of the following groups G, compute [G,G].

(a) D4

(b) Q

(c) S4

(d) A4

(e) A5

Sometimes, a group G might not admit any nontrivial maps to an abelian group, which would

happen when Gab = 1, or to say it another way, when [G,G] = G. Such a group is called perfect.

Exercise 5. In this problem we will show that G = SL2(F5) is a perfect group. Call a matrix

A ∈ SL2(F5) a sheering matrix if A is upper or lower triangular with 1s on the diagonal.

(a) Prove that SL2(F5) is generated by the two matrices

S =

(
1 1

0 1

)
and T =

(
0 −1

1 0

)
.

(b) Prove that T can be written as a product of sheering matrices. Conclude that the sheering

matrices generate SL2(F5).
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(c) Prove that any two sheering matrices in SL2(F5) are conjugate to one another. (Hint: try

conjugating S by matrices of the form D or TD, where D is diagonal.)

(d) Use your previous computations to prove that S or some other sheering matrix lies in [G,G].

Conclude that [G,G] = G.

Observe that SL2(F5) is not simple because it has a nontrivial center. It is the smallest perfect

group that is not a simple group. Showing that matrix groups are perfect comes up because Tits’

simplicity theorem lets you upgrade a group being perfect (plus some extra stuff) into that group

being simple.

Nilpotent groups

A nilpotent group is a generalization of an abelian group. There are two equivalent definitions of

nilpotent groups:

• G is nilpotent if the descending sequence of normal subgroups G = G0▷G1▷G2▷. . . eventually

terminates in the trivial subgroup, where Gi+1 = [Gi, G].

• G is nilpotent if the ascending sequence of normal subgroups {e} = Z0 ◁ Z1 ◁ Z2 ◁ . . . even-

tually terminates in the full group G, where Zi+1 is defined so that Zi+1/Zi = Z(G/Zi).

Exercise 6. Confirm that this gives a well-defined subgroup.

These are respectively called the lower central series and the upper central series. If these

series terminate, their lengths are the same, and the length of either series is called the nilpotency

class of G. The groups of nilpotency class 1 are exactly the abelian groups.

Exercise 7. (What’s a central series?) There is a general definition of a “central series”, altho I

think historically it was invented in retrospect to solidify the things that the lower and upper central

series have in common. A central series is a sequence of normal subgroupsG = A0 ▷ A1 ▷ · · · ▷ An = {e}
that satisfy either of the two conditions

(i) [G,Ai] < Ai+1, or

(ii) Ai/Ai+1 < Z(G/Ai+1).

I will write Ai to mean An−i.

(a) Prove that conditions (i) and (ii) above are equivalent.

(b) Given any central series Ai, prove that Ai > Gi.

(c) Given any central series Ai, prove that Ai+1/Ai < Z(G/Zi).

(d) Conclude that any central series has the same length.
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Exercise 8. A finite group is called a p-group if #G = pk for some k. Fix an arbitrary finite

nontrivial p-group G.

(a) Show that Z(G) ̸= {e}.

(b) Show that G is nilpotent.

Why are nilpotent groups called “nilpotent”? There doesn’t seem to be anything particularly

nilpotent-y about them. The term originally comes from the theory of Lie groups and Lie algebras.

Here’s one possible way to think about it: for each g ∈ G we can define a function fg : G → G by

fg(x) = [g, x] = gxg91x91. This function is not a homomorphism, it’s just a function. A group is

called nilpotent if there exists some n such that for all g, fng is the trivial map G→ {e}, i.e. if each
of the functions fg is “nilpotent” in a more normal sense of the word.

Solvable groups

Another generalization of abelian groups are solvable groups. A group is solvable if there exists a

sequence of subgroups G = G0 > G1 > · · · > Gn = {e} such that (i) Gi+1 ◁Gi and (ii) the quotients

Gi/Gi+1 are all abelian. The terminology comes from Galois theory, as a polynomial can be solved

by radicals if and only if its Galois group is a solvable group.

Given a group, it might be difficult to come up with such a sequence of subgroups just by thinking

and messing around. Luckily, there’s a standard sequence that you can always check. Given a group

G, the derived series of G is the sequence of subgroups G = G(0) > G(1) > G(2) > . . . where

G(i+1) is the commutator subgroup of the preceding group [G(i), G(i)]. (I would prefer to call this

the “commutator series”, but it seems like in actual practice nobody does that.)

Exercise 9. The derived series is usually not the same as the lower central series. The difference

in the definition is G(i+1) = [G(i), G(i)] versus Gi+1 = [G,Gi]. Find an example of a group G

demonstrating that these two series can be different.

Exercise 10. Prove that a finite group G is solvable if and only if the derived series eventually

reaches the trivial group.

Exercise 11.

(a) Prove that any nilpotent group is solvable.

(b) Find an example of a group that is solvable but not nilpotent.

Exercise 12. Let 1 → A → B → C → 1 be a short exact sequence of groups. Show that if A and

C are solvable, then B is also solvable.
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Exercise 13. (August 2019 Problem 5) Let G be the group of 2×2 invertible upper triangular

matrices over the field Fp.

(a) Prove that G has only one subgroup of order p, and that this subgroup is normal. (Hint: first

show that an element of order p must have 1’s on the diagonal.)

(b) Prove that G is solvable by exhibiting a homomorphism f from G to an abelian group A such

that the kernel of f is also abelian.

(c) Prove that if p ̸= 2, G is not nilpotent.

Exercise 14. (January 2022 Problem 1) On this problem, only the answer will be graded. Con-

sider the symmetric group S4.

(a) What is the order of S4?

(b) What is the order of its center Z(S4)?

(c) What is the order of its commutator subgroup [S4, S4]?

(d) Is S4 a simple group?

(e) Is S4 a solvable group?

(f) How many conjugacy classes does S4 have?

Some other problems I like

Exercise 15. The additive group Q has the property that for any q ∈ Q and any n ∈ Z, there
exists an element q′ ∈ Q such that nq′ = q (in particular q′ = q/n). An abelian group with this

property is called a divisible group.

(a) Show that any nontrivial divisible group is infinite.

(b) Show that if G is divisible, and N is a subgroup (normal since G is abelian), then G/N is

divisible.

Exercise 16. (January 2017 Problem 1, (d) omitted) Give an example of each of the follow-

ing.

(a) A group G with a normal subgroup N such that G is not a semidirect product N ⋊G/N .

(b) A finite group G that is nilpotent but not abelian.

(c) A group G whose commutator subgroup [G,G] is equal to G.

(e) A transitive action of S3 on a set X of cardinality greater than 3.
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