
Algebra SEP Notes Summer ’24

Group Theory 2
Group actions

by Ivan Aidun

These are notes interspersed with exercises. The purpose of these notes is to be more fleshed out

than Evan Dummit’s old notes, but shorter and more focused than a textbook treatment. Halfway

between Dummit and Dummit and Foote, so to speak. I hope these are helpful to you!

Group Actions

Group actions are the most important thing about groups. Their importance is witnessed by the

fact that the groups Dn, Sn, GLn, and SLn are essentially defined as “the group that acts on the set

X” for different sets X. This is part of the power of abstract algebra, we can take a group whose

elements are really actions on some other set, and treat it as if those actions were small enough to

hold in your hand.

Formally, a group action is like a “scalar multiplication” by elements of a group on a set X.

Because groups can be noncommutative, we need to specify whether we want our groups to act

on the left or the right. Most of the time I will write actions on the left, but you can’t get away

from right actions sometimes. Then, for a group G to act on a set X on the left, often written

G⟳X, we require that for each x ∈ X and g ∈ G, the element g · x ∈ X, such that e · x = x and

g2 · (g1 · x) = (g2g1) · x.
Equivalently, a group action is the same thing as for each g ∈ G, specifying a function ϕg : X →

X, where the function ϕg(x) = g · x. The two latter requirements above can be rephrased as

ϕe = idX , and ϕg1 ◦ ϕg2 = ϕg1g2 . Notice that because g91 · (g · x) = (g91g) · x = e · x = x, the

functions ϕg are in fact all bijections X → X. Denoting the group of bijections X ∼→ X by SX (by

analogy to the symmetric group Sn), we can further rephrase a group action G⟳X as a group

homomorphism G → SX . Sometimes it is more convenient to view a group action in this way, and

sometimes it is more convenient to view it more as a scalar multiplication.

If the set X is finite, you can visualize a group action by drawing a graph. For example, let C6

be the (multiplicatively written) cyclic group of order 6 generated by g. Here is a possible action

of C6 on a set of size 7.
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Below is a more complicated graph of D4 acting on a square. Here, the generator r is rotation

counterclockwise by 45◦, and s is reflection about the diagonal going from upper right to lower left.
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Here is some commonly-used terminology relating to group actions:

• Sometimes a set X with a group action G⟳X is called a G-set.

• Given an element x ∈ X, the set of elements of X that can be reached by applying some g ∈ G

is called the orbit of x, which I will denote G ·x, but some people prefer OrbG(x). So, in the

first example G · x1 = {x1} while G · x2 = {x2, x3, x4}. In the second example, there is only

one orbit, and we can get from any position of the square to any other position by applying

an appropriate group element. An action where there is only one orbit is called transitive.

• An element x ∈ X is a fixed point of the action if G · x = {x}. The set of fixed points is

denoted XG. In the first example, XG = {x1}, while in the second example XG = ∅. The

standard notation for the subset of X fixed by a specific g ∈ G is Xg, which I find really easy

to get confused with XG, so I’m going to write Fix(g) instead.

• Given an element x ∈ X, the set of g ∈ G so that g · x = x is called the stabilizer of

x. The stabilizer of a given x ∈ X is always a subgroup of G. I will denote the stabilizer

of x by Stab(x), but some people denote Gx. Again, I just find it confusing to try to keep

track of the differences between G · x,XG, Xg, and Gx, and only the first two are common

enough and sensible enough for me to keep straight. So, in the first example, Stab(x1) = C6

(corresponding to being a fixed point) and Stab(x2) = {e, g3}. In the second example, every

stabilizer is equal to {e}. An action where every stabilizer is trivial is called free.

• A less-commonly used term, the kernel of an action is the set of g ∈ G that fix every x ∈ X.

When we think about an action as a homomorphism G → SX , the kernel of the action

coincides with the kernel of the homomorphism. As a consequence, the kernel of an action is

always a normal subgroup of G. In the first example, the kernel is {e, g3}, while in the second

example the kernel is {e}.

• An action that has trivial kernel is called a faithful action. So, the second example is faithful,

while the first is not. To put it another way, an action is faithful iff g · x = h · x for all x ∈ X
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implies that g = h. The idea is that a faithful action “faithfully encodes” all the different

elements of G as different functions on X, without collapsing any distinctions. A free action

is always faithful, but not necessarily the other way around. Exercise 1. Give an example.

• Sometimes an action that is both transitive and free will be called simply transitive. The

action of D4 above is simply transitive.

If group actions are the most important thing about groups, then the Orbit-Stabilizer Theorem

is the most important thing about group actions.

Theorem (Orbit-Stabilizer). Suppose G is a group, X is a set, and G⟳X. For each x ∈ X, the

map

G → (G · x)
g 7→ g · x

is surjective and |Stab(x)|-to-one. In particular, if G is finite, we obtain that

#G

#Stab(x)
= #(G · x).

Exercise 2. (Lagrange’s theorem) Let G be a finite group, H < G, and denote by [G : H] the

number of cosets of H in G. Use the Orbit-Stabilizer Theorem to prove that #G = [G : H] · (#H),

and in particular that both #H and [G : H] divide #G.

Exercise 3. (Class equation)

(a) Let G be a finite group, and let G⟳X. Let x1, . . . , xn be representatives of each orbit in X.

Prove that

#X =
n∑

i=1

#(G · xi).

(b) Let g1, . . . , gk ∈ G be representatives for the conjugacy classes of size greater than 1. Prove

that

#G = #Z(G) +

k∑
i=1

#[gi].

(c) Use the Orbit-Stabilizer Theorem to prove that #[gi] | #G.

Exercise 4. (Cauchy’s theorem) Let G be a finite group, and let p | #G be a prime number.

Consider the set X ⊂ Gp consisting of all the tuples (g1, . . . , gp) satisfying
∏p

i=1 gi = e.

(a) Let the cyclic group Cp = ⟨σ⟩ act on X by cyclic permutation: σ ·(g1, . . . , gp) = (g2, . . . , gp, g1).

Prove that σ · (g1, . . . , gp) ∈ X, so this action is well-defined.
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(b) Prove that #X = (#G)p−1.

(c) Prove that the number of tuples in X fixed by σ is divisible by p. Prove also that this number

is at least 1.

(d) Prove that there is an element g ∈ G of exact order p.

I’m not going to state or prove the Sylow theorems, because they don’t appear on the qual

anymore, but the proof of the is similar to the above proof of Cauchy’s theorem, except you have

to be both more careful and more clever. As Jordan Ellenberg once said, the Sylow theorems are

hard to prove because you need to have not one but two good ideas.

Exercise 5. (January 2024 Problem 3) Let G be a group acting transitively on a set X. Let

H ⊂ G be a normal subgroup. Then H naturally acts on X, but the action need not be transitive.

Prove that all orbits of H on X have the same cardinality. (You may assume G and X are finite if

you like, but this is not necessary!)

Exercise 6. (August 2022 Problem 2) Let Fp be the finite field with p elements; here p is a

prime number. Let V = F2
p, and recall that G = GL2(Fp) is the group of invertible linear transfor-

mations on V . G acts on V in the usual way (by multiplication).

(a) Describe the orbits of this action.

(b) Describe the stabilizer in G of the vector (
1

0

)
∈ V.

(c) Consider now the action of G on V × V (acting independently on each of the two vectors).

How many orbits does this action have?

(d) What is the cardinality of G? Remember to justify your answer.

Exercise 7. (August 2023 Problem 5, edited) By Sn we mean the symmetric group on n ele-

ments.

(a) Let G be a subgroup of Sn. Suppose the action of G on {1, . . . , n} is transitive. (NB such a

subgroup is called a “transitive” subgroup.) Prove that for any x, y ∈ {1, . . . , n}, the stabilizer
of x in G and the stabilizer of y in G are conjugate subgroups of G.

(b) Prove that if G is a transitive abelian subgroup of Sn, then |G| = n.

(c) Give an example of an integer n and a subgroup G of Sn such that G is transitive and abelian

but not cyclic.

(d) For which integers n does Sn contain a transitive abelian subgroup G that is not cyclic?

(Justify your answer.)
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