
Algebra SEP Notes Summer ’24

Field and Galois Theory
by Ivan Aidun

These are notes interspersed with exercises. The purpose of these notes is to be more fleshed out

than Evan Dummit’s old notes, but shorter and more focused than a textbook treatment. Halfway

between Dummit and Dummit and Foote, so to speak. I hope these are helpful to you!

Overview

Galois theory was created to understand the roots of polynomials in one variable. The key insight

of Galois theory is that we can understand polynomials by understanding the possible symmetries

of their roots. A motto to keep in mind about the Fundamental Theorem of Galois Theory (or any

equivalence you meet for the rest of your life): what the equivalence gives you is flexibility. You can

use that flexibility when solving problems, by seeing which equivalent formulation is best suited to

information you have available. (Different parts of a problem might be better suited to different

sides of the equivalence, so you may end up passing back and forth more than once!)

I think the most important things to know in these notes are: the examples given in Example

1, and the basic properties of cyclotomic extensions and finite fields given immediately before; the

basic relations between the minimal polynomial of an element, the degree of that element, and

the degree of a field extension; the composite and intersection of two fields; the definition of a

separable extension, and examples of inseparable extensions; the Fundamental Theorem, and the

Galois groups of all the examples in Example 1.

Important examples to keep in mind:

The following examples of field extensions are in fact all Galois extensions, so whenever you read a

fact about field extensions or about Galois theory you should start by testing what that fact says

about these extensions.

Example 1.

• Starting with any field K, if µ ∈ K is not a square, then K(
√
µ) is an extension of degree 2.

In particular, this lets you think of lots of degree 2 extensions of Q. Exercise 1. If n,m are

different squarefree integers, show that Q(
√
n) and Q(

√
m) are different extensions of Q.

• For every n, the extension Q(ζn)/Q has degree φ(n). (See Cyclotomic extensions below.)

• For any p, and any d, there is an extension of Fp of degree d. In fact, a non-transparent fact is

that any two extensions of Fp of degree d are actually the same! So, we call this unique extension

Fpd the finite field with pd elements. (Sometimes also called the “Galois field with pd elements”,

and sometimes denoted GF (p, d).) (See Extensions of finite fields below.)

• Combining some of the above examples, given an field K and an element µ ∈ K which is not a

perfect nth power, then we can form the extension K( n
√
µ, ζn), which is the field containing all
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the roots of the polynomial xn −µ (see Splitting fields and normal extensions below). For

example, Q( 3
√
2, ζ3).

Quick Recap on Polynomials

(This first exercise is also in the ring theory notes.) Recall that there is a notion of “division with

remainder” for polynomials: if f(x) and g(x) are polynomials over a field, then there are unique

polynomials q(x) and r(x) so that f(x) = g(x)q(x) + r(x) and either deg(r) < deg(g) or r(x) = 0.

Exercise 2. Let K be a field, prove that K[x] is a principal ideal domain.

Exercise 3.

(a) Let K be a field, f ∈ K[x], and suppose there is a ∈ K so that f(a) = 0. Prove that (x−a) | f .

(b) Conclude that a polynomial over a field cannot have more roots than its degree.

(c) Verify that the polynomial x2 − 1 has 4 roots in Z/8Z.

Since we’re going to be making statements about irreducible polynomials over various fields,

you might reasonably wonder how to show that a given polynomial is irreducible. In general, it is

pretty hard to tell directly. Here’s a quick and dirty list of facts that can be helpful:

(1) Quadratic polynomials are easy to check (except in characteristic 2) because you can use

the quadratic formula. In particular, a quadratic polynomial is itreducible if and only if its

discriminant b2 − 4ac is not a square (again, things are more complicated in characteristic 2).

(2) (Gauss’ Lemma) A polynomial in Q[x] with coprime integer coefficients is irreducible if and

only if it is irreducible in Z[x]. Since we can always multiply through to clear denominators,

this means that understanding irreducibility of polynomials over Q is the same as understanding

irreducibility of polynomials over Z. This is useful because...

(3) A polynomial in Z[x] with coprime coefficients is irreducible if it is irreducible over Z/mZ for

some integer m. This is usually most useful when the degree is 3 and m is a small prime number

because, as mentioned below, in that case Z/pZ is a field, so you can check irreducibility by just

checking if any of the p elements of Z/pZ are roots. (I want to state the fact for any m, even

tho on the qual you usually only use it for a prime number, because I think it’s neat.)

(4) (Eisenstein’s criterion) There’s one more test which can only be used for polynomials in Z[x]:
suppose you write your polynomial f = anx

n+an−1x
n−1+ · · ·+a0, and suppose there is a prime

number p such that:

• the leading coefficient an is not divisible by p,

• every other coefficient is divisible by p, and

• the constant term a0 is not divisible by p2.

Then f is irreducible. (In fact, this can be modified to work for any PID, and indeed any integral

domain. Eisenstein discovered it while working over the ring Z[i].)
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(5) (Rational root theorem) Writing f as above, the rational root theorem says any rational root

of f must be of the form ±d/e, where d | a0 and e | an. Again, for degree 2 or 3 polynomials

this lets you compute if f is irreducible by ruling out all the possible rational roots.

• In particular, the rational root theorem implies that any rational root of a monic polynomial

is in fact an integer root.

(6) (Galois theory) Finally, tho not least, Galois theory gives us another tool for showing that

a polynomial is irreducible. If we can, by hook or by crook, find the splitting field K of a

given polynomial and compute the Galois group G = Gal(K/Q), we can check if the original

polynomial is irreducible or not by checking whether or not G acts transitively on its roots.

While this may sound far-fetched, in practice this is the most powerful item on this list.

Exercise 4. Some practice showing polynomials are irreducible using these techniques.

(a) Consider the polynomial f(x) = x2−2x−4. Show that f(x) is irreducible over Q by reducing

mod p for some prime p, and checking that it has no roots mod p. (If you have a number-theoretic

instinct, you might wonder how to choose a good p in advance...)

(b) Consider the polynomial x3 + 2x2 + 3x+ 4.

(i) Use rational root theorem to check that this polynomial has no linear factors over Q, and

is therefore irreducible.

(ii) The next two parts outline another possible argument. Reduce this polynomial mod 4.

Prove that any root of this polynomial must be divisible by 4.

(iii) Reduce this polynomial mod 8, and check that x = 4 is not a root. Therefore, this

polynomial is irreducible mod 8.

(c) Consider the polynomial g(x) = x4 − tx2 − t over the field of rational functions Q(t). Show

that this polynomial is irreducible by showing it is Eisenstein in the ring Q[t].

Fields

Definitions and basic examples

Example 2. You already are friends with the fields Q,R,C. Here are some other examples that

come up:

• If K is any field, I can form the field K(x), the field of all rational functions in the variable x.

This is the field of fractions of the ring of polynomials K[x]. I could equally well form K(x, y),

which is the field of rational functions in the variables x, y. These fields are good to keep in

mind because a lot of counterexamples come from them.

• For any prime number p, the quotient ring Z/pZ is a field. Often, when people are thinking

about Z/pZ as a field (rather than as one of the quotients Z/mZ that just by chance happens

to be a field), they will denote it as Fp. If you have never done it before, Exercise 5. prove

that Z/pZ is a field (i.e. prove that you can “divide” by any nonzero element).
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• A generalization of the previous example: if R is a ring, and m is a maximal ideal of R, then

R/m is a field. If you have never done it before, Exercise 6. prove this (again, the sticking

point is showing you can divide).

– A special case of this, which is most important to us, is the case when R = K[x], and m = (f)

for an irreducible polynomial f . If you have never done it before, Exercise 7. prove that

this is indeed a maximal ideal.

Comment. Notationally, writing square brackets K[x] means “K adjoin x (as a ring)”, while writing

the parentheses K(x) means “K adjoin x (as a field)”. That is to say, K[x] has all the elements of

K, the element x, and anything that is has to have by adding, subtracting, and multiplying, while

K(x) also has everything it must have through division as well. This notation makes sense even if x

is not an indeterminate variable, but an actual number. So, for example, one can write things like

Z[
√
2], Z[1/2], Q[

√
2], Q(

√
2), Q(π). If you have never done it before, Exercise 8. figure out what

a general element of each of the preceding rings/fields looks like. Figure out why Q[
√
2] = Q(

√
2).

Figure out what I mean when I write C(x+ x91).

A field extension of a field K is a field L such that L ⊃ K. (Sometimes it’s better to say

an extension is a field L and an injective homomorphism f : K → L.) Often, we will write a field

extension by just writing L/K, read aloud as “L over K”. Unfortunately, this looks a lot like the

notation for a quotient group, but that is not what this notation means. Rather, we imagine that

the extension field lies physically “above” the base field, which we depict:

L

K

A field extension is algebraic if it can be obtained by adjoining roots of polynomials to the

base field. (Possibly infinitely many!)

Example 3.

• C is an algebraic field extension of R. R is a non-algebraic field extension of both Q(π) and

Q(
√
2). Q(π) and Q(

√
2) are both field extensions of Q, but Q(

√
2) is algebraic over Q while

Q(π) is not.

• Given any field K, and any irreducible polynomial f , we can use our favorite construction to get

an algebraic field extension of K that contains a root of f : K[x]/(f). In the field K[x]/(f), the

equivalence class of x is a root of f , because we have modded out by f exactly with the goal of

making f(x) = 0 in the quotient.

– C ∼= R[x]/(x2 + 1)

– Q(
√
2) ∼= Q[x]/(x2 − 2).

– Over F3, the polynomial x2 + 1 is irreducible. So, I can form a field F3[x]/(x
2 + 1), which it

seems reasonable to call F3(i). Exercise 9. List all the elements of this field.
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– Over F5, the polynomial x2 − 2 is irreducible. So, I can form a field F5[x]/(x
2 − 2), which it

seems reasonable to call F5(
√
2). Exercise 10. How many elements does it have?

Given a field extension L/K, observe that L is a K-vector space. This modest observation is

central to everything else.

Given a field extension L/K, we define the degree of the extension, written [L : K], to be the

dimension of L as a K-vector space. An extension is called “finite” if [L : K] is finite, otherwise an

extension is called “infinite”. Exercise 11. find a Q-basis of Q(
√
2), Q( 3

√
2), Q(

√
2,
√
3), and Q(π)

as extensions of Q. Do the numbers you find line up with your intuition?

Proposition (multiplicativity of degrees). Suppose L is an extension of K, and M is an extension

of L. Then [M : K] = [M : L][L : K]. In diagram form:

M

L

K

d2

d1

d1d2

Here are several facts about some really fundamental examples.

Cyclotomic extensions:

The complex numbers ζkn = e2kπi/n for 0 ≤ k < n are the n distinct roots of the polynomial xn − 1.

They are called “nth roots of unity” because they satisfy xn = 1. If k and n share a common factor,

then ζkn = ζℓd, where ℓ = k/ gcd(n, k) and d = n/ gcd(n, k), so the nth roots of unity include all the

dth roots of unity for every d dividing n. The numbers ζkn where k is coprime to n are the nth roots

of unity that are not dth roots of unity for any smaller d, they are called the “primitive nth roots

of unity”. There are φ(n) of them, where φ(n) is Euler’s φ function, which counts the number of

positive integers up to n which are coprime to n.

If you are not already familiar with the function φ(n), here are a few of its properties (which

you may prove if you desire):

• φ(p) = p− 1 and φ(pk) = pk−1(p− 1) for any prime number p.

• φ(n) is equal to the number of elements in (Z/nZ)×, the group of units mod n.

• φ(ab) = φ(a)φ(b) for any coprime integers a, b. (This follows from the previous bullet along with

the Chinese Remainder Theorem.)

We define the cyclotomic polynomial Φn(x) as follows:

• Φ1(x) = x− 1,

• for n > 1,
∏
d|n

Φd(x) = xn − 1,
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where the notation means the product is taken over all positive integers d which divide n. The

polynomial Φn(x) is monic, has coefficients in Z, is irreducible over Z, and its roots in C are exactly

the primitive nth roots of unity. (The term “cyclotomic” means “circle cutting”, and Gauss chose

it because the nth roots of unity evenly divide the unit circle in the complex plane.)

Exercise 12. Compute Φn(x) for n = 2, . . . , 20. Yes, I’m serious.

Exercise 13. Prove that Φp(x+ 1) is p-Eisenstein.

We can see that Φn(x) splits in the field Q(ζn), since indeed xn − 1 splits and Φn is a divisor.

Later, we will see that Q(ζn)/Q is a Galois extension with Galois group of order φ(n), which implies

that Φn is irreducible over Q for general n. As far as I know, this is the best way to prove that Φn

is irreducible. In Exercise 13, you proved that Φp(x) is irreducible by showing it is Eisenstein, and

one can check the irreducibility of Φn directly (as Gauss did, and as Dummit and Foote do more

briefly), but doing so is much more difficult than computing the Galois group of its splitting field.

Extensions of finite fields

Exercise 14. (Frobenius) Suppose K is a field of characteristic p. Show that the map x 7→ xp is

an injective field homomorphism K → K. This map is known as the Frobenius map.

Exercise 15. Consider the finite field Fp, and the polynomial xp
n − x. As we will see later, this

polynomial is separable, and so has distinct roots in its splitting field.

(a) Use 14 to show that the pn roots of this polynomial form a field.

(b) Show that an extension of Fp has pn elements if and only if it is a degree n extension.

(c) Let L/Fp be any extension of Fp of degree n. Show that every α ∈ L satisfies αpn = α,

and hence that up to isomorphism there is a unique extension of Fp of degree n. This unique

extension is denoted Fpn , or often people will write Fq and it is understood that q = pn for some

p, n.

Exercise 16. (January 2023 Problem 4) Consider the finite field Fp where p is a prime number.

(a) How many monic irreducible polynomials of degree 5 are there over Fp? (Your answer should

be a function of p.)

(b) Let P (x), Q(x) ∈ Fp[x] be irreducible polynomials. Give a necessary and sufficient condition

for there to exist a third polynomial R(x) ∈ Fp[x] such that Q(x) divides P (R(x)). (The

polynomial R(x) need not be irreducible.)

As a note, the multiplicative group of Fpn is in fact cyclic, so there exists some element α which

has exact order pn − 1.
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Minimal polynomial and degree of an element

Several of our examples indicate that individual elements of field extensions also have a notion of

“degree” attached to them: if α is a root of an irreducible polynomial f of degree d, then α ought

to be called “algebraic of degree d”. We might be a little cautious, though, because it’s not exactly

clear how the degree of an individual element will relate to the degree of the field, because if I make

a field extension like Q(
√
2,
√
3)/Q, I not only get

√
2 and

√
3, but also

√
2 +

√
3, 5/(

√
6 −

√
2),

and a bunch of other stuff. One might guess that these elements are in fact algebraic numbers, and

that their degrees are less than or equal to the degree of the given field extension, but it seems far

from straightforward to prove that.

Here’s where the linear algebra will help us! Suppose that α ∈ L, then there is a map from

L → L given by x 7→ αx, the “multiply by α” map. This map is not a ring homomorphism, but it

is K-linear. If, moreover, [L : K] is finite, then I can choose a finite K-basis for L and write the

multiplication by α map as a matrix Mα. That matrix will have a minimal polynomial, which is

actually independent of the particular basis chosen, and that minimal polynomial will have α as a

root. (Note that since the matrix Mα has entries in K, its minimal polynomial will have coefficients

in K. In particular, the minimal polynomial of α probably won’t be just x− α unless α ∈ K.)

Proposition. Let L/K be a finite extension, let α ∈ L, and let f(x) be the minimal polynomial of

the matrix Mα. Then:

(1) f(x) is irreducible over K, and

(2) f(α) = 0.

The polynomial f(x) is called the “minimal polynomial of α”. (Another way to phrase this is: every

element of a finite-degree field extension is algebraic.)

If α is algebraic of degree d over K, then [K(α) : K] = d.

Exercise 17. The fieldQ(
√
2,
√
3) is degree 4 overQ, and we can take aQ-basis to be {1,

√
2,
√
3,
√
6}.

(a) In this basis, write down the matrix associated to multiplication by
√
2 +

√
3.

(b) Use that matrix to find the minimal polynomial of
√
2 +

√
3.

Algebraic closure

A field K is algebraically closed if every polynomial with coefficients in K has a root in K. The

algebraic closure of a field K, denoted K, is an extension of K with the following two properties:

(1) K is algebraically closed, and

(2) no subfield of K containing K is algebraically closed.

Proposition. Every field is contained in an algebraically closed field. By Zorn’s Lemma, this in

particular implies every field has an algebraic closure.
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Composite and intersection of two fields

Fix an algebraic closure K/K, and let L1, L2 be extensions of K contained in K. Then we can form

other fields out of the extensions L1, L2:

• The intersection L1 ∩ L2 is a field extension of K.

• The composite (or compositum) L1L2 is defined to be the smallest extension of K that contains

both L1 and L2 as subextensions. More concretely, for every pair of elements ℓ1 ∈ L1, ℓ2 ∈ L2,

the product ℓ1ℓ2 must lie in L1L2 (hence the notation). But, then you also have to throw in all

the finite sums of those products, and all the inverses of those sums, to make sure what you end

up with is still a field.

Example 4.

• Let K1 = Q(
√
2), K2 = Q(

√
3). Then K1 ∩K2 = Q, K1K2 = Q(

√
2,
√
3).

• Let K1 = Q(ζ8), K2 = Q(
√√

2 + 1).

Exercise 18. Prove that K1 ∩K2 = Q(
√
2), K1K2 = Q(ζ16). (It might be helpful to know that

ζ8 =
√
i = (1 + i)/

√
2.)

Separable polynomials and extensions

A polynomial f ∈ K[x] is called separable if it has distinct roots in its splitting field, and an

extension is called separable if it can be obtained by adjoining roots of separable polynomials. A

trivial example of an inseparable polynomial is something like (x− 2)2 over Q. In characteristic 0,

every irreducible polynomial turns out to be separable, but this need not be the case in characteristic

p. For example, in the field Fp(t), the polynomial xp − t is irreducible (by Eisenstein), but as soon

as we adjoin a root, it will split as (x− p
√
t)p.

There is a criterion for determining if a polynomial is separable.

Exercise 19. Let f ∈ K[x] be a polynomial, and let f ′ be its formal derivative. That is, f ′ is

obtained from f by just applying the power rule to each of the terms in f . Prove that f is separable

over K if and only if gcd(f, f ′) = 1.

In particular, this shows that xp
n−x is a separable polynomial over Fp, as mentioned previously.

A field where every finite extension is separable is called a perfect field, and we’ve already

seen that all finite fields and fields of characteristic 0 are perfect. On the other hand, the above

example shows that Fp(t) is not a perfect field, and inseparable extensions can arise when taking an

irreducible polynomials of degree a power of p. (In fact, every inseparable irreducible polynomial is

of the form f(xp
k
) for some irreducible polynomial f .)

Exercise 20. (August 2022 Problem 4) Let p be a prime number, Fp the finite field with p

elements, and K = Fp(t) the field of rational functions in one variable t over Fp. (So that K is the

fraction field of the polynomial ring Fp[t]).

(a) Show that the splitting field of the polynomial xp − t ∈ K[x] over K is inseparable.
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(b) Show that the splitting field of xp − t − 1 ∈ K[x] over K is the same as the splitting field of

xp − t.

(c) Show that K has a single degree p inseparable extension.

The primitive element theorem

Several of our examples have been of the form K(α) for some algebraic number α. However, we’ve

also had examples like Q(
√
2,
√
3), where we adjoin two different algebraic numbers. A field where

we’ve only adjoined one thing (called a simple extension) is sometimes easier to think about, so

a reasonable question is: can every field extension be written as K(α) for some α? In this case, the

element α is called a primitive element for the extension. Above, we computed that
√
2 +

√
3 is

a degree 4 element of Q(
√
2,
√
3), so it must be a primitive element for that extension.

The following proposition gives a partial answer to when we can find a primitive element, and

the answer is basically “in most of the cases where it matters”.

Proposition (Primitive element theorem). Let L/K be a finite extension of characteristic 0. Then

there is an algebraic α ∈ L so that L = K(α). In particular, every finite extension of Q can be

written as Q(α) for some algebraic number.

There is a more precise, but also more abstract, form of the primitive element theorem, which

allows us to obtain exact conditions under which a field extension is simple.

Proposition (Primitive element theorem, again). If L/K is a separable extension (possibly of

characteristic p), then we can find α ∈ L so that L = K(α). In maximum generality: there exists

a primitive element α ∈ L if and only if there are only finitely many intermediate fields between L

and K.

Exercise 21. Find an example of a field extension that does not have a primitive element.

Galois Theory

Splitting fields and normal extensions

We’ve talked about forming field extensions by adding on a root of a polynomial. However, you may

have noticed, this does not always make the polynomial factor completely into linear terms! For

example, in Q( 3
√
2), the polynomial x3 − 2 factors into a linear term and an irreducible quadratic.

(How do I know?) In order to use Galois theory to understand a polynomial, we need to have all

of its roots living in the field.

We define the splitting field of a polynomial f (not necessarily irreducible) to be the smallest

extension of K that contains all the roots of f . We might get the splitting field after adjoining only

one root of f , or we might need to adjoin each root, one after the other.
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Exercise 22. Suppose f is irreducible of degree n, and that L/K is the splitting field of f . Prove

that n ≤ [L : K] ≤ n!. What do you think the most likely value of [L : K] is for a “random”

polynomial f? (This latter question is somewhat ill-defined, interpret it in a way that seems

reasonable to you.)

A related notion is the notion of a normal extension. A normal extension is an extension

L/K such that every polynomial which has any one root in L, actually has all of its roots in L.

This is stronger than saying that L is the splitting field of some f : this is saying that L contains the

splitting field for every f that has even a single root contained in L. That seems like it’s infinitely

more powerful than just being the splitting field of a single f .

... Well, it seems that way, but actually, the two things are exactly equivalent.

Proposition. A finite extension L/K is normal if and only if L is the splitting field of some

polynomial over K.

Automorphism group of an extension

Okay, and we said we are going to study polynomials using group theory, so at some point we better

introduce some groups. Given an extension L/K, we define the automorphism group of the

extension Aut(L/K) to be the group of all self-isomorphisms σ : L → L that fix K pointwise; that

is, such that for every x ∈ K, σ(x) = x.

Importantly, such an automorphism is moreover a K-linear map! That means once we choose a

basis for L as a K-vector space, we can uniquely specify such an automorphism by just specifying

what it does to each basis vector. Often, we choose to have 1 ∈ L be one of our basis vectors, so

then an automorphism fixing K is the same thing as an automorphism that sends 1 7→ 1.

We must keep in mind, not every linear map defines an automorphism, it must also respect the

multiplication of the field L. In particular, Exercise 23. for every σ ∈ Aut(L/K), if α ∈ L is a

root of an irreducible polynomial f , then σ(α) must also be a root of f .

Example 5.

Consider the extension Q(
√
2)/Q. We can write a basis for this as {1,

√
2}, as promised in the

preceding paragraphs. Then any automorphism of this extension must fix 1, and must send
√
2

to ±
√
2, so there are exactly 2 such automorphisms. Thus, the automorphism group is a group of

order 2.

Consider the extension Q( 3
√
2)/Q. We can write a basis for this as {1, 3

√
2, 3

√
4}. However, to specify

an automorphism, it’s enough to specify what happens to 3
√
2, because then the action on 3

√
4 will

be determined by multiplication. By the above, any automorphism must send 3
√
2 to another root

of x3 − 2, but there is only one such root inside the field, so the only possible automorphism is the

identity automorphism.

Consider the extensionQ( 3
√
2, ζ3)/Q. Think about it long enough to decide that it has automorphism

group S3 (or D3 if you are a fan of dihedral groups).
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It is always the case that |Aut(L/K)| ≤ [L : K]. Equality is achieved if and only if L is the

splitting field of a separable polynomial. (!!!) In such a case, we call Aut(L/K) the Galois group,

and write it as Gal(L/K).

The Fundamental Theorem of Galois Theory

Now, we come to the big theorem. It basically says: all the data contained in a field is reflected in

its Galois group.

Proposition (Fundamental Theorem of Galois Theory). Suppose L/K is a Galois extension with

Galois group G. There is a correspondence between the subgroups H of G and the intermediate

fields L ⊃ F ⊃ K, given by taking the subfield of L fixed by H, denoted LH . This correspondence

has the following properties:

(a) It is a bijection, so every intermediate field F is the fixed field of some H. We would prove

this by proving first that ...

(b) L is always Galois over any intermediate field F , and Gal(L/F ) is a subgroup of G.

(c) The bijection is order-reversing: if L ⊃ F1 ⊃ F2 ⊃ K, the correspondence sends this to the

chain {1} ⊂ H1 ⊂ H2 ⊂ G.

(d) The degree [L : F ] is equal to the size of the corresponding H.

(e) An intermediate field is Galois over K if and only if the corresponding subgroup H is normal

in G. This is why they are called “normal extensions”, they correspond to normal subgroups.

In this case, Gal(F/K) = G/H.

(f) If F1, F2 are intermediate extensions corresponding to the subgroups H1, H2, then the com-

posite F1F2 corresponds to H1 ∩H2, and the intersection F1 ∩ F2 corresponds to the subgroup

generated by H1 and H2.

Exercise 24.

(a) Let K = Q(ζn). What is [K : Q]?

(b) Show that K is a Galois extension of Q by explicitly finding [K : Q]-many automorphisms.

Exercise 25. Consider Fpn/Fp. Let F be the Frobenius map. Prove that the powers of Frobenius

give n distinct automorphisms of Fpn fixing Fp, and therefore that the Galois group is cyclic of order

n.

Exercise 26.

(a) Show that Q(
√
2,
√
3) is Galois over Q, and find its Galois group.

(b) Show that Q( 3
√
2, ζ3) is Galois over Q, and find its Galois group.
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Exercise 27. (August 2016 Problem 5, modified) Consider the field K = Q(ζ7). According

to your computation above, Gal(K/Q) is abelian and has even order, so has a normal subgroup

of index 2. By the Fundamental Theorem of Galois Theory, this subgroup corresponds to a field

Q(x) ⊂ K such that [Q(x) : Q] = 2, where x is some element of K. Compute an element x in terms

of ζ7 which generates this quadratic subfield.

Exercise 28. (Stolen from another school’s algebra qual) Let f ∈ Q[x] be a degree 5 irre-

ducible polynomial, let K/Q be its splitting field, and let α, β, γ, δ, ϵ ∈ K be the roots of f . Suppose

that Gal(K/Q) = S5, the symmetric group on 5 elements.

(a) Find the Galois group of K/Q(α, β).

(b) Find the Galois group of K/Q(α+ β, αβ).

(c) The field Q(α, β) contains the field Q(α+ β, αβ). Find the degree [Q(α, β) : Q(α+ β, αβ)].

Exercise 29. (August 2017 Problem 4) Suppose that K ⊆ C is a Galois extension of Q, [K :

Q] = 4, and
√
−m ∈ K for some positive integer m. Show that Gal(K/Q) ∼= Z/2Z× Z/2Z.
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